Exercise 7.1.

Trace the TM in Figure 7.6 (see next slide), accepting the language $\left\{x x \mid x \in\{a, b\}^{*}\right\}$, on the string aaba. Show the configuration at each step.

Exercise 7.2.

Below is a transition table for a TM with input alphabet $\{a, b\}$.

q	σ	$\delta(q, \sigma)$	q	σ	$\delta(q, \sigma)$	q	σ	$\delta(q, \sigma)$
q_{0}	Δ	$\left(q_{1}, \Delta, R\right)$	q_{2}	Δ	$\left(h_{a}, \Delta, R\right)$	q_{6}	a	$\left(q_{6}, a, R\right)$
q_{1}	a	$\left(q_{1}, a, R\right)$	q_{3}	Δ	$\left(q_{4}, a, R\right)$	q_{6}	b	$\left(q_{6}, b, R\right)$
q_{1}	b	$\left(q_{1}, b, R\right)$	q_{4}	a	$\left(q_{4}, a, R\right)$	q_{6}	Δ	$\left(q_{7}, b, L\right)$
q_{1}	Δ	$\left(q_{2}, \Delta, L\right)$	q_{4}	b	$\left(q_{4}, b, R\right)$	q_{7}	a	$\left(q_{7}, a, L\right)$
q_{2}	a	$\left(q_{3}, \Delta, R\right)$	q_{4}	Δ	$\left(q_{7}, a, L\right)$	q_{7}	b	$\left(q_{7}, b, L\right)$
q_{2}	b	$\left(q_{5}, \Delta, R\right)$	q_{5}	Δ	$\left(q_{6}, b, R\right)$	q_{7}	Δ	$\left(q_{2}, \Delta, L\right)$

What is the final configuration if the TM starts with input string x ?

Exercise 7.3.

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be a TM, and let s and t be the sizes of the sets Q and Γ, respectively.
How many distinct configurations of T could there possibly be in which all tape squares past square n are blank and T 's tape head is on or to the left of square n ? (The tape squares are numbered beginning with 0 .)

Exercise 7.10.

We do not define \wedge-transitions for a TM. Why not? What features of a TM make it unnecessary or inappropriate to talk about \wedge-transitions?

Exercise 7.17.

For each case below, draw a TM that computes the indicated function.

In the first four parts, the function is from \mathbb{N} to \mathbb{N}. In each of these parts, assume that the TM uses unary notation - i.e., the natural number n is represented by the string 1^{n}.
a. $f(x)=x+2$
b. $f(x)=2 x$
c. $f(x)=x^{2}$
e. $E:\{a, b\}^{*} \times\{a, b\}^{*} \rightarrow\{0,1\}$ defined by $E(x, y)=1$ if $x=y, \quad E(x, y)=0$ otherwise.

Exercise.

Draw a TM that computes the function

$$
f(x, y)=x+y
$$

where x, y are integers ≥ 0.

Assume that the TM uses unary notation, both for its input and for its output.

Make this exercise yourself.

Exercise.

Draw a TM that computes the function $f(x, y)=x \bmod y$

Hint: implement the following algorithm:

$$
\begin{gathered}
\text { while }(x>=y) \\
x=x-y
\end{gathered}
$$

Make this exercise yourself.

Exercise 7.12.

Suppose T is a TM that accepts a language L.
Describe how you would modify T to obtain another TM accepting L that never halts in the reject state h_{r}.

Exercise 7.16.

Does every TM compute a partial function? Explain.

