Exercise 7.1.

Trace the TM in Figure 7.6 (see next slide), accepting the language $\{xx \mid x \in \{a, b\}^*\}$, on the string *aaba*. Show the configuration at each step.

Exercise 7.2.

Below is a transition table for a TM with input alphabet $\{a, b\}$.

q	σ	$\delta(q,\sigma)$	q	σ	$\delta(q,\sigma)$	q	σ	$\delta(q,\sigma)$
q_0	Δ	(q_1, Δ, R)	q_2	Δ	(h_a, Δ, R)	q_6	a	(q_{6}, a, R)
q_1	a	(q_1, a, R)	q_{3}	Δ	(q_{4}, a, R)	q_6	b	(q_{6}, b, R)
q_1	b	(q_{1}, b, R)	q_{4}	a	(q_{4}, a, R)	q_6	Δ	(q_{7}, b, L)
q_1	Δ	(q_2, Δ, L)	q_{4}	b	(q_4, b, R)	q_7	a	(q_{7}, a, L)
q_2	a	(q_3, Δ, R)	q_{4}	Δ	(q_{7}, a, L)	q_7	b	(q_{7}, b, L)
q_2	b	(q_5, Δ, R)	q_5	Δ	(q_{6}, b, R)	q_7	Δ	(q_2, Δ, L)

What is the final configuration if the TM starts with input string x?

Exercise 7.3.

Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a TM, and let s and t be the sizes of the sets Q and Γ , respectively.

How many distinct configurations of T could there possibly be in which all tape squares past square n are blank and T's tape head is on or to the left of square n? (The tape squares are numbered beginning with 0.)

Exercise 7.10.

We do not define Λ -transitions for a TM. Why not? What features of a TM make it unnecessary or inappropriate to talk about Λ -transitions?

Exercise 7.17.

For each case below, draw a TM that computes the indicated function.

In the first four parts, the function is from \mathbb{N} to \mathbb{N} . In each of these parts, assume that the TM uses unary notation — i.e., the natural number n is represented by the string 1^n .

- **a.** f(x) = x + 2
- **b.** f(x) = 2x
- **c.** $f(x) = x^2$
- e. $E: \{a, b\}^* \times \{a, b\}^* \rightarrow \{0, 1\}$ defined by E(x, y) = 1 if x = y, E(x, y) = 0 otherwise.

Exercise.

Draw a TM that computes the function

$$f(x,y) = x + y$$

where x, y are integers ≥ 0 .

Assume that the TM uses unary notation, both for its input and for its output.

Make this exercise yourself.

Exercise.

Draw a TM that computes the function $f(x, y) = x \mod y$

Hint: implement the following algorithm:

while
$$(x \ge y)$$

$$x = x - y;$$

Make this exercise yourself.

Exercise 7.12.

Suppose T is a TM that accepts a language L. Describe how you would modify T to obtain another TM accepting L that never halts in the reject state h_r . Exercise 7.16.

Does every TM compute a partial function? Explain.