Computability

voorjaar 2023
https://liacs.leidenuniv.nl/~vlietrvan1/computability/
college 7, 23 maart 2023
8. Recursively Enumerable Languages
8.5. Not Every Language is Recursively Enumerable 9. Undecidable Problems
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines

8.5. Not Every Language is Recursively Enumerable

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
cs. languages	LBA	cs. grammar	
re. languages	TM	unrestr. grammar	

From Foundations of Computer Science:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f: \mathbb{N} \rightarrow A$, or a list a_{0}, a_{1}, \ldots of elements of A such that every element of A appears exactly once in the list.
A is countable if A is either finite or countably infinite.
uncountable: not countable

Example 8.29. Languages Are Countable Sets

$$
L \subseteq \Sigma^{*}=\bigcup_{i=0}^{\infty} \Sigma^{i}
$$

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet Γ of every Turing machine T is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

Example 8.30. The Set of Turing Machines Is Countable
Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet Σ There is injective function $e: \mathcal{T}(\Sigma) \rightarrow\{0,1\}^{*}$ (e is encoding function)

Hence (. . .) , set of recursively enumerable languages is countable

Example 8.31. The Set $2^{\mathbb{N}}$ is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^{*}$ are the same size, there are uncountably many languages over $\{0,1\}$

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.
(Not) Recursively enumerable
vs.
(Not) Countable

A slide from lecture 4:

Theorem 8.4. If L_{1} and L_{2} are both recursively enumerable languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursively enumerable.

Proof. . .

Exercise 8.3.

Is the following statement true or false?

If L_{1}, L_{2}, \ldots are any recursively enumerable subsets of Σ^{*}, then $\cup_{i=1}^{\infty} L_{i}$ is recursively enumerable.

Give reasons for your answer.

9.2. Reductions and the Halting Problem

A slide from lecture 6:

For general decision problem P, an encoding e of instances I as strings $e(I)$ over alphabet Σ is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding $e(I)$
2. e is injective
3. string $e(I)$ can be decoded

A slide from lecture 6:

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

A slide from lecture 6:

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

A slide from lecture 6:
Definition 9.6. Reducing One Decision Problem to Another ...

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1}
if and only if $F(I)$ is a yes-instance of P_{2}.

A slide from lecture 6:

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

A slide from lecture 6:

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?
Halts: Given a TM T and a string w, does T halt on input w ?

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are ...

Halts: Given a TM T and a string x, does T halt on input x ? Instances are ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are ...

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are ...

Halts: Given a TM T and a string x, does T halt on input x ? Instances are...

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are...

Now fix a TM T :
T-Accepts: Given a string x, does T accept x ?
Instances are ...
Decidable or undecidable ? (cf. Exercise 9.7.)

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts-^: Given a $T M T$, is $\Lambda \in L(T)$?

Proof.

1. Prove that Accepts \leq Accepts-^ . . .

Reduction from Accepts to Accepts-^.

Instance of Accepts is (T_{1}, x) for TM T_{1} and string x. Instance of Accepts- \wedge is $\mathrm{TM} T_{2}$.
$T_{2}=F\left(T_{1}, x\right)=$

$$
\operatorname{Write}(x) \rightarrow T_{1}
$$

T_{2} accepts \wedge, if and only if T_{1} accepts x.

If we had an algorithm/TM A_{2} to solve Accepts- Λ, then we would also have an algorithm/TM A_{1} to solve Accepts, as follows:
A_{1} :
Given instance $\left(T_{1}, x\right)$ of Accepts,

1. construct $T_{2}=F\left(T_{1}, x\right)$;
2. run A_{2} on T_{2}.
A_{1} answers 'yes' for ($\left.T_{1}, x\right)$,
if and only if A_{2} answers 'yes' for T_{2},
if and only if T_{2} is yes-instance of Accepts- \wedge (T_{2} accepts Λ),
if and only if $\left(T_{1}, x\right)$ is yes-instance of Accepts (T_{1} accepts x)

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Order $P_{1} \leq P_{2}$

Proof. . .

Informal proof:

Suppose that $P_{1} \leq P_{2}$, and that function F maps instance I_{1} of P_{1} to instance $I_{2}=F\left(I_{1}\right)$ of P_{2} with same answer yes/no

If we have an algorithm/TM A_{2} to solve P_{2}, then we also have an algorithm/TM A_{1} to solve P_{1}, as follows:
A_{1} :
Given instance I_{1} of P_{1},

1. construct $I_{2}=F\left(I_{1}\right)$;
2. run A_{2} on I_{2}.

$$
A_{1}: I_{1} \longrightarrow I_{2} \longrightarrow A_{2} \text { yes } / \text { no }
$$

A_{1} answers 'yes' for I_{1},
if and only if A_{2} answers 'yes' for I_{2},
if and only $I_{2}=F\left(I_{1}\right)$ is yes-instance of P_{2},
if and only if I_{1} is yes-instance of P_{1}

In context of decidability: decision problem $P \approx$ language $Y(P)$
Question
"is instance I of P a yes-instance ?"
is essentially the same as
"does string x represent yes-instance of P ?",
i.e.,
"is string $x \in Y(P)$?"

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts-^: Given a $T M T$, is $\Lambda \in L(T)$?

Proof.

1. Prove that Accepts \leq Accepts-^ . . .

Theorem 9.9. The following five decision problems are undecidable.
2. AcceptsEverything:

Given a TM T with input alphabet Σ, is $L(T)=\Sigma^{*}$?
Proof.
2. Prove that Accepts-^ \leq AcceptsEverything ...

Theorem 9.9. The following five decision problems are undecidable.
3. Subset: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right) \subseteq L\left(T_{2}\right)$?

Proof.

3. Prove that AcceptsEverything \leq Subset ...

Theorem 9.9. The following five decision problems are undecidable.
4. Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Proof.

4. Prove that Subset \leq Equivalent . . .
‘The intersection of two Turing machines’

Accepts- \wedge : Given a TM T, is $\wedge \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.
5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts- $\wedge \leq$ WritesSymbol ...

AtLeast10MovesOn-^:
Given a TM T, does T make at least ten moves on input \wedge ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?

Theorem 9.10.
The decision problem WritesNonblank is decidable.

Proof. . .

Definition 9.11. A Language Property of TMs
A property R of Turing machines is called a language property if, for every Turing machine T having property R, and every other TM T_{1} with $L\left(T_{1}\right)=L(T), T_{1}$ also has property R.

A language property of TMs is nontrivial if there is at least one $T M$ that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Example of nontrivial language property:
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?

Theorem 9.12. Rice's Theorem

If R is a nontrivial language property of TMs, then the decision problem

$$
P_{R}: \text { Given a TM } T \text {, does } T \text { have property } R \text { ? }
$$

is undecidable.

Proof. . .

Prove that Accepts- $\wedge \leq P_{R} \ldots$
(or that Accepts- $\wedge \leq P_{\text {not }-R} \ldots$...)

Examples of decision problems to which Rice's theorem can be applied:

1. Accepts- L : Given a TM T, is $L(T)=L$? (assuming ...)
2. AcceptsSomething:

Given a TM T, is there at least one string in $L(T)$?
3. AcceptsTwoOrMore:

Given a TM T, does $L(T)$ have at least two elements ?
4. AcceptsFinite: Given a TM T, is $L(T)$ finite ?
5. AcceptsRecursive:

Given a TM T, is $L(T)$ recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Rice's theorem cannot be applied (directly)

- if the decision problem does not involve just one TM Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$
- if the decision problem involves the operation of the TM WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ? WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input \wedge ?
- if the decision problem involves a trivial property Accepts-NSA: Given a TM T, is $L(T)=$ NSA ?

Undecidable Decision Problems (we have discussed)

Planning

laatste hoor-/werkcollege,
vrijdag 24 maart 2023, 13.15-15.00 uur
tentamen, donderdag 30 maart 2023, 09.00-12.00 uur
vragenuur, 28 maart 2023, 11.00-12.45 uur? Ja!

