Computability

voorjaar 2023
https://liacs.leidenuniv.nl/~vlietrvan1/computability/
college 3, 23 februari 2023
7. Turing Machines
7.4. Combining Turing Machines
7.5. Multitape Turing Machines
7.7. Nondeterministic Turing Machines

7.4. Combining Turing Machines

Example.

A TM for $f(x)=a^{n_{a}(x)}$
$x=a a b a b b a$

Example.

A TM for $f(x)=a^{n_{a}(x)}$
$x=a a b a b b a$

$$
\begin{aligned}
& \begin{array}{lllllll}
\triangle a & a & b & a & b & b & a \\
\triangle a & a & \Delta & a & b & b & a
\end{array} \\
& \triangle a a \underline{a} b b a \Delta \\
& \Delta a a a \Delta b a \Delta \\
& \Delta a a \quad a \underline{b} a \Delta \Delta \\
& \triangle a a a \Delta a \Delta \Delta \\
& \triangle a \quad a \quad a \underline{a} \Delta \Delta \Delta \\
& \triangle a \quad a \quad a \quad a \Delta \Delta \Delta
\end{aligned}
$$

Example 7.20. Inserting and Deleting a Symbol

Delete: from $y \underline{\sigma} z$ to $y \underline{z}$

Insert(σ): from $y \underline{z}$ to $y \underline{\sigma} z$
N.B.: z does not contain blanks

TM T_{1} computes f
TM T_{2} computes g
TM $T_{1} T_{2}$ computes \ldots
$T_{1} \longrightarrow T_{2}$

Example 7.17. Finding the Next Blank or the Previous Blank

NB
$P B$

Example 7.18. Copying a String

Copy: from $\underline{\Delta x}$ to $\underline{\Delta x \Delta x}$
$x=a b a a$

A slide from lecture 2

Example 7.10. The Reverse of a String

$$
\begin{aligned}
& \triangle a a b a b \\
& \triangle A a b a b \\
& \triangle A a b a A \\
& \triangle B a b a a
\end{aligned}
$$

Example 7.24. Comparing Two Strings
Equal: accept $\underline{\Delta x \Delta y}$ if $x=y$, and reject if $x \neq y$

An exercise from exercise class 2

Exercise 7.17.

For each case below, draw a TM that computes the indicated function.
e. $E:\{a, b\}^{*} \times\{a, b\}^{*} \rightarrow\{0,1\}$ defined by $E(x, y)=1$ if $x=y, \quad E(x, y)=0$ otherwise.

Example 7.25. Accepting the Language of...

Copy $\rightarrow N B \rightarrow R \rightarrow P B \rightarrow$ Equal

Example 7.25. Accepting the Language of Palindromes

$$
\text { Copy } \rightarrow N B \rightarrow R \rightarrow P B \rightarrow \text { Equal }
$$

Example 7.21. Erasing the Tape

From the current position to the right

Many notations for composition

Incorrect notations for DeleteString:

Not preferred notation:

7.5. Multitape Turing Machines

Example 5.3. A PDA Accepting the Language AnBn

$$
A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}
$$

Part of a slide from exercise class 1

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.
a. $A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}$

With two tapes...

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.
a. $A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}$

With two tapes:

A slide from exercise class 1

Exercise 7.4.

For each of the following languages, draw a transition diagram for a Turing machine that accepts that language.
a. $A n B n=\left\{a^{i} b^{i} \mid i \geq 0\right\}$

We could also use the portion of the tape to the right of the input, to simulate the stack of a deterministic pushdown automaton (works for any deterministic PDA!)

Example 7.24. Comparing Two Strings
 and reject if $x \neq y$

2-tape TM...

Multi-tape TM

- initial configuration...
- to compute a function...

Theorem 7.26. (informal)
For every 2-tape TM T, there is an ordinary 1-tape TM T_{1}, which for every input x,

- simulates the computation of T for x,
- accepts (rejects) x, if and only if T accepts (rejects) x,
- on acceptance, leaves the same output on its tape as T leaves on its first tape.

Proof idea, for $x=$ aabb. . .
The proof of this result does not have to be known for the exam.

Corollary 7.27.
Every language that is accepted by a 2-tape TM can be accepted by an ordinary 1-tape TM, and every function that is computed by a 2-tape TM can be computed by an ordinary TM.

This generalizes to k-tape TMs for $k \geq 3$.

7.7. Nondeterministic Turing Machines

A slide from lecture 2
Definition 7.1. Turing machines
A Turing machine (TM) is a 5-tuple $T=\left(Q, \Sigma,\left\ulcorner, q_{0}, \delta\right)\right.$, where
Q is a finite set of states. The two halt states h_{a} and h_{r} are not elements of Q.
Σ, the input alphabet, and Γ, the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The blank symbol Δ is not an element of Γ.
q_{0}, the initial state, is an element of Q.
δ is the transition function:

$$
\delta: Q \times(\Gamma \cup\{\Delta\}) \rightarrow\left(Q \cup\left\{h_{a}, h_{r}\right\}\right) \times(\Gamma \cup\{\Delta\}) \times\{R, L, S\}
$$

Nondeterministic Turing machine.

There may be more than one move for a state-symbol pair.

Same notation:

$$
\text { wpax } \vdash_{T} \text { yqbz } \quad \text { wpax } \vdash_{T}^{*} y q b z
$$

A string x is accepted by T if

$$
q_{0} \Delta x \vdash_{T}^{*} w h_{a y}
$$

for some strings $w, y \in(\Gamma \cup\{\Delta\})^{*}$.

NTM useful for accepting languages, for producing output, but not for computing function.

Example 7.28. The Set of Composite Natural Numbers. Use G2

Example 7.28. The Set of Composite Natural Numbers.

$$
N B \rightarrow G 2 \rightarrow N B \rightarrow G 2 \rightarrow P B \rightarrow M \rightarrow P B \rightarrow \text { Equal }
$$

Take $x=1{ }^{15}$

