A slide from lecture 7

Theorem 9.9. The following five decision problems are undecidable.
4. Equivalent: Given two $\mathrm{TMs} T_{1}$ and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Proof.

4. Prove that Subset \leq Equivalent ...

Subset: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right) \subseteq L\left(T_{2}\right)$?

Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Exercise 9.10.
a. Given two sets A and B, find two sets C and D, defined in terms of A and B, such that $A=B$ if and only if $C \subseteq D$.
b. Show that the problem Equivalent can be reduced to the problem Subset.

AcceptsEverything:
Given a TM T with input alphabet Σ, is $L(T)=\Sigma^{*}$?

Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Exercise 9.11. Construct a reduction from AcceptsEverything to the problem Equivalent.

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

Part of a slide from lecture 4:
Definition 7.33. An Encoding Function (continued)
For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

Exercise 9.23. Show that the property "accepts its own encoding" is not a language property of TMs.

A slide from lecture 4:
Example 7.34. A Sample Encoding of a TM

$$
\begin{array}{llllll}
111010111101010 & 0 & 11110111011110111010 & 0 & \\
111101101111101110110 & 0 & 111101011111010110 & 0 \\
11111011101111101110110 & 0 & 1111101010101110 & 0
\end{array}
$$

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
a. Given a TM T, does it ever reach a nonhalting state other than its initial state if it starts with a blank tape?

Exercise 9.12.

For each decision problem below, determine whether it is decidable or undecidable, and prove your answer.
b. Given a TM T and a nonhalting state q of T, does T ever enter state q when it begins with a blank tape?
e. Given a TM T, is there a string it accepts in an even number of moves?
j. Given a TM T, does T halt within ten moves on every string?
I. Given a TM T, does T eventually enter every one of its nonhalting states if it begins with a blank tape?

Exercise 9.13.

In this problem TMs are assumed to have input alphabet $\{0,1\}$. For a finite set $S \subseteq\{0,1\}^{*}, P_{S}$ denotes the decision problem: Given a TM T, is $S \subseteq L(T)$?
a. Show that if $x, y \in\{0,1\}^{*}$, then $P_{\{x\}} \leq P_{\{y\}}$.
b. Show that if $x, y, z \in\{0,1\}^{*}$, then $P_{\{x\}} \leq P_{\{y, z\}}$.
c. Show that if $x, y, z \in\{0,1\}^{*}$, then $P_{\{x, y\}} \leq P_{\{z\}}$.
d. Is it true that for every two finite subsets S and U of $\{0,1\}^{*}$, $P_{S} \leq P_{U}$.

