Exercise 7.14.

Draw the $\operatorname{Insert}(\sigma)$ TM, which changes the tape contents from $y \underline{z}$ to $y \underline{\sigma} z$.
Here $y \in(\Gamma \cup\{\Delta\})^{*}, \sigma \in \Gamma \cup\{\Delta\}$, and $z \in \Gamma^{*}$.
You may assume that $\Gamma=\{a, b\}$.

Exercise 7.13.

Suppose T is a TM that accepts every input. We might like to construct a TM R_{T} such that for every input string x, R_{T} halts in the accepting state with exactly the same tape contents as when T halts on input x, but with the tape head positioned at the rightmost nonblank symbol on the tape.

Show that there is no fixed TM T_{0} such that $R_{T}=T T_{0}$ for every T. (In other words, there is no TM capable of executing the instruction "move the tape head to the rightmost nonblank tape symbol" in every possible situation.)

Suggestion: Assume there is such a TM T_{0}, and try to find two other TMs T_{1} and T_{2} such that if $R_{T_{1}}=T_{1} T_{0}$ then $R_{T_{2}}$ cannot be $T_{2} T_{0}$.

Assume that the tape contains at least one nonblank symbol, when T halts.

Exercise 7.18.

The TM shown in Figure 7.38 computes a function f from $\{a, b\}^{*}$ to $\{a, b\}^{*}$. For any string $x \in\{a, b\}^{*}$, describe the string $f(x)$.

Exercise 7.19.

Suppose TMs T_{1} and T_{2} compute the functions f_{1} and f_{2} from \mathbb{N} to \mathbb{N}, respectively.

Describe how to construct a TM to compute the function $f_{1}+f_{2}$.

Exercise 7.20.

Draw a transition diagram for a TM with input alphabet $\{0,1\}$ that interprets the input string as the binary representation of a nonnegative integer and adds 1 to it.

You may assume that the input string is not empty.

Exercise.

Construct a 2-tape Turing machine T that has as input two strings w_{1} and w_{2} from $\{a, b\}^{*}$ (both on the first tape, separated by a single blank, as usual), and that checks in linear time whether or not w_{2} is an anagram of w_{1} (a rearrangement of the letters). If so, then T should accept, otherwise, it should reject.

Hint: in order to check if w_{2} is an anagram of w_{1}, you might look at the number of occurrences of letters in w_{1} and w_{2}.

Exercise 7.23.

Draw a transition diagram for a three-tape TM that works as follows:
starting in the configuration $\left(q_{0}, \underline{\Delta} x, \underline{\Delta} y, \underline{\Delta}\right)$,
where x and y are nonempty strings of 0 's and 1 's of the same length,
it halts in the configuration $\left(h_{a}, \underline{\Delta}, \underline{\Delta} y, \underline{\Delta} z\right)$,
where z is the string obtained by interpreting x and y as binary representations and adding them.

Use transitions of the following form:

Exercise 7.25.

We can consider a TM with a doubly infinite tape, by allowing the numbers of the tape squares to be negative as well as positive. In most respects the rules for such a TM are the same as for an ordinary one, except that now when we refer to the configuration $x q \sigma y$, including the initial configuration corresponding to some input string, there is no assumption about exactly where on the tape the strings and the tape head are.

Draw a transition diagram for a TM with a doubly infinite tape that does the following: If it begins with the tape blank except for a single a somewhere on it, it halts in the accepting state with the head on the square with the a.

