Computability

voorjaar 2021

https://liacs.leidenuniv.nl/~vlietrvan1/computability/

college 6, 11 maart 2021

- 9. Undecidable Problems
- 9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
 - 9.2. Reductions and the Halting Problem
- 9.3. More Decision Problems Involving Turing Machines

Huiswerkopgave, inleverdatum 11 maart 2021, 23.59 uur

9. Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L \subseteq \Sigma^*$, if L(T) = L.

T decides L, if T computes the characteristic function $\chi_L: \Sigma^* \to \{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,

and L is recursive, if there is a TM that decides L.

Definition 7.33. An Encoding Function

Assign numbers to each state:

$$n(h_a) = 1$$
, $n(h_r) = 2$, $n(q_0) = 3$, $n(q) \ge 4$ for other $q \in Q$.

Assign numbers to each tape symbol:

$$n(a_i) = i$$
.

Assign numbers to each tape head direction:

$$n(R) = 1$$
, $n(L) = 2$, $n(S) = 3$.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma)=(q,\tau,D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

If $z=z_1z_2\ldots z_j$ is a string, where each $z_i\in\mathcal{S}$,

$$e(z) = {0 \choose 1}^{n(z_1)} 0 1^{n(z_2)} 0 \dots 0 1^{n(z_j)} 0$$

	$e(T_0)$	$e(T_1)$	$e(T_2)$	$e(T_3)$	$e(T_4)$	$e(T_5)$	$e(T_6)$	$e(T_7)$	$e(T_8)$	$e(T_9)$
$L(T_0)$	1	0	1	0	0	1	0	0	0	1
$L(T_1)$	0	1	1	1	O	0	0	O	1	0
$L(T_2)$	1	0	O	1	O	0	1	O	0	0
$L(T_3)$	0	0	0	0	O	0	0	0	0	0
$L(T_4)$	0	0	0	0	1	0	0	0	0	0
$L(T_5)$	0	0	1	1	O	1	0	1	0	0
$L(T_6)$	0	0	O	0	Ο	0	O	O	1	0
$L(T_7)$	1	1	1	1	1	1	1	1	1	1
$L(T_8)$	0	1	0	1	0	1	0	1	0	1
$L(T_9)$	0	0	O	0	0	0	O	0	0	0
• • •						• • •				

	$e(T_0)$	$e(T_1)$	$e(T_2)$	$e(T_3)$	$e(T_4)$	$e(T_5)$	$e(T_6)$	$e(T_7)$	$e(T_8)$	$e(T_9)$	
$L(T_0)$	1	0	1	0	0	1	0	0	0	1	
$L(T_1)$	0	1	1	1	0	0	0	0	1	0	
$L(T_2)$	1	0	0	1	0	0	1	0	0	0	
$L(T_3)$	0	0	0	0	0	0	0	0	0	0	
$L(T_4)$	0	0	0	0	1	0	0	0	0	0	
$L(T_5)$	0	0	1	1	0	1	0	1	0	0	
$L(T_6)$	0	0	0	0	0	0	0	0	1	0	
$L(T_7)$	1	1	1	1	1	1	1	1	1	1	
$L(T_8)$	0	1	0	1	0	1	0	1	0	1	
$L(T_9)$	0	0	0	0	0	0	0	0	0	0	
• • •											
NSA	0	0	1	1	0	0	1	0	1	1	

Hence, NSA is not recursively enumerable.

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Set-up of constructing language NSA that is not RE:

- 1. Start with list of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2), \ldots$ each one associated with specific element of $\{0,1\}^*$ (namely $e(T_i)$)
- 2. Define another language NSA by: $e(T_i) \in NSA \iff e(T_i) \notin L(T_i)$
- 3. Conclusion: for all i, $NSA \neq L(T_i)$ Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

- 1. Start with collection of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $\{L(T) \mid \mathsf{TM}\ T\}$ each one associated with specific element of $\{0,1\}^*$ (namely e(T))
- 2. Define another language NSA by: $e(T) \in NSA \iff e(T) \notin L(T)$
- 3. Conclusion: for all TM T, $NSA \neq L(T)$ Hence, NSA is not RE

Set-up of constructing language that is not RE:

- 1. Start with list of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2), \ldots$ each one associated with specific element of $\{0,1\}^*$
- 2. Define another language L by: $x \in L \iff x \notin (\text{language that } x \text{ is associated with})$
- 3. Conclusion: for all i, $L \neq L(T_i)$ Hence, L is not RE

Set-up of constructing language L that is not RE:

- 1. Start with list of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0),L(T_1),L(T_2),\ldots$ each one associated with specific element of $\{0,1\}^*$ (namely x_i)
- 2. Define another language L by: $x_i \in L \iff x_i \notin L(T_i)$
- 3. Conclusion: for all i, $L \neq L(T_i)$ Hence, L is not RE

Every infinite list $x_0, x_1, x_2, ...$ of different elements of $\{0, 1\}^*$ yields language L that is not RE

	Λ	0	1	00	01	10	11	000	001	010	• • •
$L(T_0)$	1	0	1	0	0	1	0	0	0	1	
$L(T_1)$	0	1	1	1	0	0	0	0	1	0	
$L(T_2)$	1	0	0	1	0	0	1	0	0	0	
$L(T_3)$	0	0	0	0	0	0	0	O	0	O	
$L(T_4)$	0	0	0	0	1	0	0	0	0	0	
$L(T_5)$	0	0	1	1	0	1	0	1	0	0	
$L(T_6)$	0	0	0	0	0	0	0	0	1	0	
$L(T_7)$	1	1	1	1	1	1	1	1	1	1	
$L(T_8)$	0	1	0	1	0	1	0	1	0	1	
$L(T_9)$	0	0	0	0	0	0	0	0	0	0	
							• • •				
newL	0	0	1	1	0	0	1	0	1	1	• • •

Hence, newL is not recursively enumerable.

Definition 9.1. The Languages *NSA* and *SA*

Let

$$NSA \ = \ \{e(T) \mid T \text{ is a TM, and } e(T) \notin L(T)\}$$

$$SA \ = \ \{e(T) \mid T \text{ is a TM, and } e(T) \in L(T)\}$$

$$(NSA \text{ and } SA \text{ are for "non-self-accepting" and "self-accepting."})$$

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof...

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that SA is recursively enumerable.

Given a TM T, does T accept the string e(T)?

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path?

Given a list of integers x_1, x_2, \ldots, x_n , is the list sorted?

Self-Accepting: Given a TM T, does T accept the string e(T)?

instances...

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

yes-instances of a decision problem: instances for which the answer is 'yes'

no-instances of a decision problem: instances for which the answer is 'no'

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. *NSA*: strings representing no-instances
- 3. . . .

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. *NSA*: strings representing no-instances
- 3. E': strings not representing instances

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called *reasonable*, if

- 1. there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective
- 3. string e(I) can be decoded

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

 $N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$
 $E(P) = Y(P) \cup N(P)$

E(P) must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is *decidable* if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Theorem 9.4. The decision problem *Self-Accepting* is undecidable.

Proof...

For every decision problem, there is *complementary* problem P', obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:

Given a TM T, does T fail to accept e(T) ?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

Proof...

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

- 1. Recursive algorithms
- 2. Given NFA M and string x, is $x \in L(M)$?
- 3. Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Theorem 2.15.

Suppose $M_1=(Q_1,\Sigma,q_1,A_1,\delta_1)$ and $M_2=(Q_2,\Sigma,q_2,A_2,\delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA (Q,Σ,q_0,A,δ) , where

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

and the transition function δ is defined by the formula $\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$

for every $p \in Q_1$, every $q \in Q_2$, and every $\sigma \in \Sigma$.

Then

- 1. If $A = \{(p,q) | p \in A_1 \text{ or } q \in A_2\}$, M accepts the language $L_1 \cup L_2$.
- 2. If $A = \{(p,q) | p \in A_1 \text{ and } q \in A_2\}$, M accepts the language $L_1 \cap L_2$.
- 3. If $A=\{(p,q)|\ p\in A_1 \text{ and } q\notin A_2\}$, $M \text{ accepts the language } L_1-L_2.$

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 .

. . .

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Informal proof:

Suppose that $P_1 \leq P_2$, and that function F maps instance I_1 of P_1 to instance $I_2 = F(I_1)$ of P_2 with same answer yes/no

If we have an algorithm/TM A_2 to solve P_2 , then we also have an algorithm/TM A_1 to solve P_1 , as follows:

A_1 :

Given instance I_1 of P_1 ,

- 1. construct $I_2 = F(I_1)$;
- 2. run A_2 on I_2 .

$$I_1 \longrightarrow I_2 \longrightarrow$$
 yes/no A_1 : F A_2

 A_1 answers 'yes' for I_1 , if and only if A_2 answers 'yes' for I_2 , if and only $I_2 = F(I_1)$ is yes-instance of P_2 , if and only if I_1 is yes-instance of P_1

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w?

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts . . .

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 .

. . .

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

- 1. Prove that *Self-Accepting* ≤ *Accepts* . . .
- 2. Prove that *Accepts* ≤ *Halts* . . .

Application:

```
n = 4;
while (n is the sum of two primes)
n = n+2;
```

This program loops forever, if and only if Goldbach's conjecture is true.

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are . . .

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are . . .

Now fix a TM T:

T-Accepts: Given a string x, does T accept x?

Instances are ...

Decidable or undecidable ? (cf. Exercise 9.7.)

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda$. . .

Reduction from *Accepts* to *Accepts*- Λ .

Instance of *Accepts* is (T_1, x) for TM T_1 and string x. Instance of *Accepts*- Λ is TM T_2 .

$$T_2 = F(T_1, x) =$$

$$Write(x) \rightarrow T_1$$

 T_2 accepts Λ , if and only if T_1 accepts x.

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

A_1 :

Given instance (T_1, x) of Accepts,

- 1. construct $T_2 = F(T_1, x)$;
- 2. run A_2 on T_2 .

 A_1 answers 'yes' for (T_1, x) , if and only if A_2 answers 'yes' for T_2 , if and only T_2 accepts Λ , if and only if T_1 accepts x.