A slide from lecture 5:

Theorem 8.7. If L is a recursively enumerable language, and its complement L^{\prime} is also recursively enumerable, then L is recursive (and therefore, by Theorem 8.6, L^{\prime} is recursive).

Proof. . .

Exercise 8.4.

Suppose $L_{1}, L_{2}, \ldots, L_{k}$ form a partition of Σ^{*} : in other words, their union is Σ^{*} and any two of them are disjoint.

Show that if each L_{i} is recursively enumerable, then each L_{i} is recursive.

Exercise 8.8.

Suppose L is recursively enumerable but not recursive. Show that if T is a TM accepting L, there must be infinitely many input strings for which T loops forever.

Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.
a.
$S \rightarrow A B C S \mid A B C$
$A B \rightarrow B A \quad A C \rightarrow C A \quad B C \rightarrow C B$
$B A \rightarrow A B \quad C A \rightarrow A C \quad C B \rightarrow B C$
$A \rightarrow a \quad B \rightarrow b \quad C \rightarrow c$

Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.
b.
$S \rightarrow L a R \quad L \rightarrow L D|L T| \wedge \quad D a \rightarrow a a D \quad T a \rightarrow a a a T$
$D R \rightarrow R \quad T R \rightarrow R \quad R \rightarrow \wedge$

Exercise 8.17.

In each case below, describe the language generated by the unrestricted grammar with the given productions. The symbols a, b, and c are terminals, and all other symbols are variables.
C.
$S \rightarrow L a M R \quad L \rightarrow L T \mid E$
$T a \rightarrow a T \quad T M \rightarrow a a M T \quad T R \rightarrow a M R$
$E a \rightarrow a E \quad E M \rightarrow E \quad E R \rightarrow \Lambda$

Exercise 8.18.

Consider the unrestricted grammar with the following productions.
$S \rightarrow T D_{1} D_{2} \quad T \rightarrow A B C T \mid \wedge$
$A B \rightarrow B A \quad B A \rightarrow A B \quad C A \rightarrow A C \quad C B \rightarrow B C$
$C D_{1} \rightarrow D_{1} C \quad C D_{2} \rightarrow D_{2} a \quad B D_{1} \rightarrow D_{1} b$
$A \rightarrow a \quad D_{1} \rightarrow \wedge \quad D_{2} \rightarrow \wedge$
a. Describe the language generated by this grammar.
b. Find a single production that could be substituted for $B D_{1} \rightarrow D_{1} b$ so that the resulting language would be

$$
\left\{x a^{n}\left|n \geq 0,|x|=2 n, \text { and } n_{a}(x)=n_{b}(x)=n\right\}\right.
$$

Exercise 8.19.

For each of the following languages, find an unrestricted grammar that generates the language.
a. $\left\{a^{n} b^{n} a^{n} b^{n} \mid n \geq 0\right\}$

Exercise 8.19.

For each of the following languages, find an unrestricted grammar that generates the language.
C. $\left\{s s s \mid s \in\{a, b\}^{*}\right\}$
d. $\left\{s s^{r} s \mid s \in\{a, b\}^{*}\right\}$

Exercise 8.20.

For each of the following languages, find an unrestricted grammar that generates the language.
a. $\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)<n_{b}(x)\right.$ and $\left.n_{a}(x)<n_{c}(x)\right\}$
C. $\left\{a^{n} \quad \mid \quad n=j(j+1) / 2\right.$ for some $\left.j \geq 1\right\}$
(Suggestion: if a string has j groups of a 's, the i th group containing $i a$'s, then you can create $j+1$ groups by adding an a to each of the j groups and adding a single extra a at the beginning.)

Exercise 8.21.

Suppose G is an unrestricted grammar with start symbol T that generate the language $L \subseteq\{a, b\}^{*}$. In each part below, another unrestricted grammar is described. Say (in terms of L) what language it generates.
a. The grammar containing all the variables and all the productions of G, two additional variables S (the start variable) and E, and the additional productions

$$
S \rightarrow E T \quad E \rightarrow \wedge \quad E a \rightarrow E \quad E b \rightarrow E
$$

Exercise 8.21.

Suppose G is an unrestricted grammar with start symbol T that generate the language $L \subseteq\{a, b\}^{*}$. In each part below, another unrestricted grammar is described. Say (in terms of L) what language it generates.
b. The grammar containing all the variables and all the productions of G, four additional variables S (the start variable), F, R, and E, and the additional productions

$$
\begin{gathered}
S \rightarrow F T R \quad F a \rightarrow a F \quad F b \rightarrow b F \quad F \rightarrow E \\
E a \rightarrow E \quad E b \rightarrow E \quad E R \rightarrow \Lambda
\end{gathered}
$$

Exercise.

In lecture 5, we have discussed an implementation of phase 2 of the construction from Theorem 8.13, which simulates arbitrary derivations in an unrestricted grammar, in a nondeterministic Turing machine.

Draw the resulting NTM for the unrestricted grammar below:
$S \rightarrow L a R \quad L \rightarrow L D \mid \wedge$
$D a \rightarrow a a D \quad D R \rightarrow R \quad R \rightarrow \wedge$
N.B.: You may need components $\operatorname{Insert}(\sigma)$ and Delete in your answer.

Exercise.

For the Turing machine below, give all productions of the second type (to simulate the computation of the Turing machine) that result from the construction in the proof of Theorem 8.14.

Exercise 8.22.

Figure 7.6 shows the transition diagram for a TM accepting $X X=\left\{x x \quad \mid x \in\{a, b\}^{*}\right\}$.

In the grammar obtained from this TM as in the proof of Theorem 8.14, give a derivation for the string abab.

Exercise 8.27.

Show that if L is any recursively enumerable language, then L can be generated by a grammar in which the left side of every production is a string of one or more variables.

