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System adaptivity is becoming an important feature of modern embedded multiprocessor systems. To achieve the goal of system
adaptivity when executing Polyhedral Process Networks (PPNs) on a generic tiled Network-on-Chip (NoC) MPSoC platform, we
propose an approach to enable the run-time migration of processes among the available platform resources. In our approach,
process migration is allowed by a middleware layer which comprises two main components. The first component concerns the
inter-tile data communication between processes. We develop and evaluate a number of different communication approaches
which implement the semantics of the PPN model of computation on a generic NoC platform. The presented communication
approaches do not depend on the mapping of processes and have been implemented on a Network-on-Chip multiprocessor
platform prototyped on an FPGA. Their comparison in terms of the introduced overhead is presented in two case studies
with different communication characteristics. The second middleware component allows the actual run-time migration of PPN
processes. To this end, we propose and evaluate a process migration mechanism which leverages the PPN model of computation to
guarantee a predictable and efficient migration procedure. The efficiency and applicability of the proposed migration mechanism
is shown in a real-life case study.

1. Introduction

The technology improvement and the adoption of more
and more complex applications in consumer electronics
are forcing a rapid increase in the complexity of multi-
processor systems on chip (MPSoCs). Following this trend,
MPSoCs are becoming increasingly dynamic and adaptive,
for several reasons. One of these is that applications are
getting intrinsically dynamic. A streaming application, for
instance, can lower its frame rate if the battery charge of a
portable device is running low. Another reason is that the
workload on emerging MPSoCs cannot be predicted because
modern systems are open to new incoming applications at
run time. A third reason which calls for adaptivity is the
decreasing component reliability associated with technology
scaling. Components below the 32-nm node are more

inclined to temporal or even permanent faults. In case of a
malfunctioning system component, the rest of the system is
supposed to take over its tasks.

In our view, the system adaptivity goal shall influence
several design decisions, which we list below.

(1) The applications should be specified such that
system adaptivity can be easily supported. To this end,
we consider Polyhedral Process Networks (PPNs) [1], a
special class of Kahn Process Networks (KPNs) [2], as
model of computation to specify applications. PPNs are
composed by concurrent and autonomous processes that
communicate between each other using bounded FIFO
channels. Moreover, in PPNs, the control is completely
distributed, as well as the memories. This represents a good
match with the emerging MPSoC architectures, in which
processing elements and memories are usually distributed.
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Most importantly for our goal, the simple operational
semantics of PPNs allows for an easy adoption of system
adaptivity mechanisms. For instance, the process state which
has to be transferred upon process migration does not have
to be specified by hand by the designer and can be smaller
compared to other solutions.

(2) As a second design decision, the hardware platform
should guarantee the flexibility that adaptivity mechanisms
require. Networks-on-Chip (NoCs) [3], which is the plat-
form model considered in our work, are emerging commu-
nication infrastructures for MPSoCs that, among many other
advantages, allow for system adaptivity. This is because NoCs
are generic, since the same platform can be used to run
different applications, or to run the same application with
different mapping of processes. However, there is a mismatch
between the generic structure of the NoCs and the semantics
of the PPN model of computation (MoC). Therefore, in this
paper, we investigate and propose several communication
approaches to overcome this mismatch. All of the proposed
approaches consider system adaptivity as a driving objective,
and no specific hardware support is required from the
platform to realize the inter-tile communication between
processes.

(3) Finally, the system must be able to change the process
mapping at run-time, using process migration. To this end,
we propose and evaluate a process migration mechanism
which takes into account specific requirements of the
embedded domain such as predictability and efficiency. The
efficiency of the proposed process migration mechanism
depends on the design decisions discussed above, such as the
MoC used to specify the applications. In this respect, the
adoption of the PPN MoC ease the realization of process
migration in our approach. In our opinion, the problem
of a predictable and efficient process migration mechanism
in distributed-memory MPSoCs has not received sufficient
attention. The aim of our work presented in this paper is to
contribute to a more mature solution of this problem.

1.1. Paper Contributions. The contributions of this paper
are twofold. On the one hand, we propose and evaluate
different communication approaches that implement the
PPN semantics on NoC-based MPSoC platforms, enabling
mapping-independent and efficient execution of PPN appli-
cations, as well as easy process migration. The proposed
communication approaches are generic, since they do not
rely on specific hardware support from the NoC, and are used
to cope with the mismatch between the PPN MoC and the
NoC hardware structure.

On the other hand, we develop a predictable process
migration mechanism that allows run-time process remap-
ping among the tiles of the NoC, which is a fundamental
requirement for system adaptivity. The peculiarity of our
solution is that, leveraging the PPN operational semantics
and process structure, the migration can actually start at any
point during the execution of the main body of a process
without the need of moving a large state. Moreover, an upper
bound of the process migration overhead can be found,
based on the PPN topology and FIFO buffer sizes.

1.2. Related Work. Run-time resource management is a
known topic in general purpose distributed systems schedul-
ing [4]. In particular, process migration mechanisms [5, 6],
have been developed and evaluated in this context to enable
dynamic load distribution, fault resilience, and improved
system administration and data access locality. In recent
years, run-time management has been gaining popularity
and applications also in multiprocessor embedded systems.
This domain imposes tight constraints, such as cost, power,
and predictability, that run-time management and process
migration mechanisms must consider carefully. [7] provides
a survey of run-time management examples in state-of-the-
art academic and industrial solutions, together with a generic
description of run-time manager features and design space.

Our work is focused on a specific component of run-time
management strategies, namely, the process migration mech-
anism. Papers addressing process (or task) migration imple-
mentation in MPSoCs can also be found in the literature. The
closest to our work is [8], in which the goals of scalability
and system adaptivity are achieved through a distributed task
migration decision policy over a purely distributed-memory
multiprocessor. Similar to our approach, their platform is
programmed using a process network MoC. However, in
their approach, the actual task migration can take place only
at fixed points, which correspond to the communication
primitive calls. Our approach, instead, enables migration at
any point in the execution of the main body of processes. This
leads to a faster response time to migration decisions, which
is preferable for instance in case of faults.

Other task migration approaches are explained and
quantitatively evaluated in [9, 10]. Dynamic task re-mapping
is achieved at user-level or middleware/OS level, respec-
tively. In both these approaches, the user needs to define
checkpoints in the code where the migration can take place.
This can require some manual effort from the designer
which is not needed in our approach. Moreover, a relevant
difference from our work is the intertask communication
realization, which exploits a shared memory system. We
argue that our approach, which uses purely distributed
memory, can perform better in emerging MPSoC platforms
since it provides better scalability.

The model of computation adopted in our work (Poly-
hedral Process Networks [1]) not only eases significantly
the implementation of system adaptivity mechanism, but
it also has several other advantages and applications which
can be found in the literature. In particular, our approach
exploits the pn compiler [11] to automatically convert
static affine nested-loop programs (SANLPs) to parallel
PPN specifications and to determine the buffer sizes that
guarantee deadlock-free execution. Thus, using the PPN
model of computation allows us to program an MPSoC in
a systematic and automated way. Although the pn compiler
imposes some restrictions on the specification of the input
application, we note that a large set of streaming applications
can be effectively specified as SANLPs. In addition to the case
studies considered in this paper, more application examples
regard image/video-processing (JPEG2000, H.264), sound
processing (FM radio, MP3), and scientific computation
(QR decomposition, stencil, finite-difference time-domain).
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Moreover, a recent work [12] has shown that most of
the streaming applications can be specified using the Syn-
chronous Data Flow (SDF), model [13]. The PPN model
is more expressive than SDF; thus it can as well be used
effectively to model most streaming applications.

In general Kahn Process Networks (KPNs), of which
PPNs represent a special class, are a widely studied dis-
tributed model of computation. They are used for describing
systems where streams of data are transformed by processes
executing in sequence or parallel. Previous research on the
use of KPNs in multiprocessor embedded devices has been
mainly focusing on the design of frameworks which employ
them as a model for application specification [14–16], and
which aim at supporting and optimizing the mapping of
KPN processes on the nodes of a reference platform [17,
18]. In [14, 15], different methods and tools are proposed
for automatically generating KPN application models from
programs written in C/C++. Design space exploration tools
and performance analysis are then usually employed for
optimizing the mapping of the generated KPN processes
on a reference platform. A design phase usually follows in
which software synthesis for multiprocessor systems [16,
18], or architecture synthesis for FPGA platforms [14] is
implemented. A survey of design flows based on the KPN
MoC can be found in [19].

The approaches described above, which map applications
described as KPNs to customized platforms, have a strong
coupling between the application and the platform. Running
a different application on the generated platform would not
be possible or, even if possible, would give bad performance
results. We adopt a different approach where we start by
the assumption that we have a platform equipped with
(possibly heterogeneous) cores well interconnected with a
NoC. We provide a PPN API for this platform that the PPN
application processes will comply to. Most importantly, the
application code remains the same in all possible mappings
of the processes. This is achieved by a proposed intermediate
layer, called middleware, that includes the mapping-related
information and implements the PPN communication API.

This approach, where software synthesis relies on the
high-level APIs provided by the reference platform for
facilitating the programming of a multiprocessor system,
can be seen elsewhere. The trend from single core design
to many core design has forced to consider inter-processor
communication issues for passing the data between the cores.
One of the emerged message passing communication API
is Multicore Association’s Communication API (MCAPI)
[20] that targets the inter-core communication in a multi-
core chip. MCAPI is the light-weight (low communication
latencies and memory footprint) implementation of message
passing interface APIs such as Open MPI [21]. However,
these MPI standards are not quite fit for the KPN semantics
[22], and building the semantics on top of their primitives
brings an overhead compared to platforms with dedicated
FIFO support.

The communication and synchronization problem when
implementing KPNs over multiprocessor platforms without
hardware support for FIFO buffers has been considered
in [18, 23]. In [23] the receiver-initiated method has been

proposed and evaluated for the Cell BE platform. On the
same hardware platform, [18] proposes a different protocol,
which makes use of mailboxes and windowed FIFOs. The
difference with our work presented in this paper is that we
actually compare a number of approaches to implement the
process network semantics, and that we deal with a different
kind of platform, with no remote memory access support.
Moreover, in both [18, 23], system adaptivity is not taken
into account.

In [22] the active virtual connector approach has been
proposed and evaluated analytically, whereas our results are
obtained by the experiments with the real implementation.
Moreover, in this paper, we propose yet another approach,
namely, virtual connector with variable rate.

In [24] the problem of implementing the KPN semantics
on a NoC is addressed. However, in their approach, the
NoC topology is customized to the needs of the application
at design time, and network end-to-end flow control is
used to implement the blocking write feature. In our work
system adaptivity is considered since the middleware enables
run-time management and the platform is generic; that is,
it allows the execution of any application specified as a
PPN.

An approach to guarantee blocking write behavior is
also used in [8]. That work proposes the use of dedi-
cated operating system communication primitives, which
guarantee that the remote FIFO buffer is not full before
sending messages through a simple request/acknowledge
protocol. The communication approaches described in our
paper assume a more proactive behavior of the consumer
processes to guarantee the blocking on write compared
to the request/acknowledge protocol. We argue that our
approach can lead to better performance since it requires less
synchronization points.

The remainder of the paper is organized as follows. The
solution approach and its main component, the proposed
middleware, which performs inter-tile communication and
process migration, are introduced in Section 2. The details
of the two main middleware parts are described separately,
in Section 3 for the inter-tile communication realization
and in Section 4 for the process migration mechanism. The
applications and case studies used to evaluate the middleware
components for inter-tile communication and the process
migration mechanism are explained in Section 5, followed
by the experimental setup and results. Finally, Section 6
concludes the paper.

2. Proposed Approach

The starting assumption of our system adaptivity approach,
as depicted in the right part of Figure 1, is that we target
an MPSoC composed of tiles, connected by a NoC, with
completely distributed memories and no direct remote
memory access. This means that the processing element
of a tile can only directly access the content of its own
local memory. All the communication and synchronization
between processes mapped on different tiles can only happen
using messages sent over the NoC.
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Figure 1: Software infrastructure for each tile of the NoC.

Our approach for realizing system adaptivity consists
of deploying the processes of the application(s) modeled
as PPNs over the NoC-based MPSoC and allowing their
run-time remapping to adapt the system to the changing
operating conditions such as variation in quality of service
requirements, availability of resources, or power budget
constraints. In particular, system adaptivity in our system
is supported by using a dedicated middleware, which is
highlighted in the software infrastructure diagram in the left
part of Figure 1.

At the top of the software stack, applications are de-
scribed by PPN processes implemented as separate threads.
An example of a thread representing a PPN process is
given in Figure 3(b), and it will be described in detail in
Section 3. However, in this work, the basic structure of
PPN processes has been adapted to ease the realization
of a predictable process migration mechanism, as will be
described in Section 4.

At the bottom of the software stack, the operating system
(OS) is responsible for all kinds of process management
(process creation, deletion, setting its priority, suspending,
or resuming it). These features are essential for the run-
time management of the system, and in particular for the
execution of process migrations. Moreover, each processor
has multitasking capabilities thanks to the OS. In case of
many-to-one mapping, that is when more than one process
are mapped on the same processor, the scheduling is data-
driven. This means that a process runs as long as it blocks
in reading/writing from/to a FIFO buffer. When the process
blocks, it yields the processor control to the next process in
the ready queue in a round-robin fashion.

In between the applications and the operating system,
we devised and implemented a middleware which comprises
two main components. The first one is the PPN communi-
cation API, which realizes the communication and synchro-
nization between processes located in separate tiles, accord-
ing to the PPN semantics. The second one is the process
migration API, which deals with process creation/deletion,
state migration, and the other actions needed for run-time
process remapping. The two middleware components will be
described thoroughly in Sections 3 and 4, respectively.

3. PPN Communication

This section describes the different solutions that we have
devised and explored for the implementation of the PPN

process communication and synchronization on a tiled NoC-
based MPSoC. Basically, the devised approaches differ in
the frequency of acknowledgment messages sent from a
consumer process to a producer process about the status of
the consumer FIFO buffers.

3.1. Some Definitions. A PPN is a graph defined as a tuple
(P , C), where

(i) P = {P1, . . . ,PN} is a set of processes;

(ii) C = {ch1, . . . , chK} is a set of FIFO channels.

Each process P ∈ P has a set of input channels ICP and
output channels OCP . The processes which write into ICP are
the predecessors, and the processes which read from OCP are
the successors. The processing element (PE) onto which the
process is mapped is denoted as map(P).

For each channel ch ∈ C:

(i) we can derive, using the pn compiler [11], a buffer
size B which guarantees deadlock-free execution of
the PPN;

(ii) the producer process, which writes data to the
channel, and the consumer process, which reads data
from it, are denoted, respectively, as prod(ch) and
cons(ch).

PPN processes communicate and synchronize using these
FIFO channels. The PPN semantics forces a process to block
on read, when trying to get a data token from an empty FIFO,
and block on write, when trying to write data to a full FIFO.

All PPN processes have the same code structure, an
example of which is given in Figure 3(b). Nested loops
iterate, for a given number of times, the body of the process,
which is split in three main parts. First, the process reads
the input data tokens from (a subset of) the input channels.
This is represented by the read statements in the figure.
Second, the process function (F) produces the output tokens
by processing the input tokens. Finally, the output tokens
are written to (a subset of) the output channels (write
statement).

The simplicity of the PPN process structure and seman-
tics eases the development of system adaptivity support, as
will be described further in the paper. Only minor changes to
the PPN process structure are needed to allow a predictable
process migration mechanism, as will be described in
Section 4.
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Figure 2: Producer-consumer pair with FIFO buffer split over two
tiles.

3.2. Inter-Tile Synchronization Problem. The main problem
addressed in this section is the efficient implementation of a
communication API allowing the execution of applications
modeled as PPNs on Network-on-Chip MPSoC platforms.
The first requirement is that this API must respect the
PPN semantics. Moreover, we want our middleware to be
application-independent and oriented to system adaptivity.

The communication and synchronization problem when
mapping PPNs on a NoC is depicted in Figure 2. Consider
a producer P and a consumer C connected through an
asynchronous communication FIFO buffer B. If both the
producer and the consumer can directly access the status
register of this FIFO buffer, to check whether it is empty
or full, implementing the PPN semantics is straightforward.
However, in NoC implementations with no direct remote
memory access, processes can exchange tokens only via the
network. Thus, we have to split the buffer B in BP and
BC , one on the producer tile and one on the consumer
tile. We want to implement the PPN semantics without
a dedicated support from the underlying architecture that
allows checking for the status of the remote queues. If size(B)
is the minimum buffer size that guarantees deadlock-free
execution of the original PPN graph, the size of BP and BC

must be set such that size(BP) + size(BC) ≥ size(B).
We do not require support for multiple hardware FIFOs

on each NoC tile. The only hardware buffer of a tile resides
in the network interface (NI). We just rely on the ability to
transfer tokens, in both directions, from this buffer to the
software FIFOs which implement the channels of our PPN.

Consider again Figure 2. Even if the consumer process C
can only access the status of BC , implementing the blocking
read is trivial because every time process C wants to access
BC , and this buffer is empty, the consumer just has to wait
until tokens arrive from the producer tile. However, since
the producer process B can only access the status of BP ,
implementing the blocking on write behavior is more difficult.
The producer must know that the remote buffer BC is not full
before sending tokens to C over the NoC. There are several
ways to notify the producer about the status of the buffer on
the consumer side, and we will compare the approaches that
we have investigated in the remainder of this section.

P3

P2

P1

CH1
CH2 CH3

(a)

CH1

CH2 else

out = F(in1);

write (out, CH3);
}}

CH3

if (condition)
read (in1, CH1);

read (in1, CH2);

Process P2

for (i = 0; i < M; i++) {
for ( j = 0; j < N ; j++) {

(b)

Figure 3: Example of a PPN (a) and structure of process P2 (b).

Furthermore, we want the communication API to take
care of the distribution of processes among the NoC tiles with
no influence on the application designer. This means that we
want to maintain the code structure of the PPN application
processes, an example of which is shown in Figure 3(b).
In particular, we want the communication primitives (read,
write) of PPN processes to remain generic, without the
notion of process mapping or platform details. These
generic primitives are then translated by the communication
API implementation in mapping- and platform-dependent
function calls.

In all of the communication approaches described below,
system adaptivity is taken into account by using dedicated
middleware tables that list, among other information, the
source and destination tile for each channel of the PPN
graph. For instance, when a process is up to send a packet
to the consumer via a specific channel, the implementation
of the write primitive will check in the middleware table
what is the current destination of that channel. Then, it will
place the packet in the NI output buffer, with the appropriate
destination field of the header. As described in Section 4,
these middleware tables are updated at run-time to allow
runtime remapping of application processes over the tiles.

3.3. Virtual Connector Approach (VC). In the virtual connec-
tor communication approach, which is depicted in Figure 4,
for every channel in the original PPN graph, we add a
virtual one in the opposite direction. This virtual connector
is used for acknowledging the producer about the status
of the FIFO buffer on the consumer tile. We adapted this
approach, previously proposed in [22], to the needs of
our system implementation. In that work the proposed
communication middleware is active, meaning that it is
implemented using separate threads which deal with the
PPN communication, while in our implementation the
middleware is static, with no separate threads for commu-
nication. Although a comparison of the static and active
implementations may be worthwhile to do, for the moment
we adopt the static approach with the argument that the
scheduling and synchronization of additional middleware
processes may introduce an additional overhead due to the
context switching times.

For each channel in the original PPN graph, we instanti-
ate a software FIFO buffer on the consumer tile. The sizes
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Figure 4: Producer-consumer pair using the virtual connector approach.

of these buffers are set to the value of the original buffer
size in the PPN graph. On the producer tile there are no
software FIFOs when using this approach, because tokens
can be directly sent over the network via the NI. This is due
to the fact that the credits system guarantees that enough
locations are free on the remote buffers before sending a
token. Therefore, referring back to Figure 2, in this approach
for each channel i, size(BC

i ) = size(Bi) and size(BP
i ) = 0.

In our implementation, we store on the producer side a
variable for each channel, called credit, which represents the
number of free slots in the remote FIFO buffer implementing
that channel. At startup, the credit is set to the size of the
remote FIFO (crediti = size(BC

i )) because all of its slots are
free. For each token sent over the network by the producer,
the credit of the corresponding channel is decreased by one.
The producer is allowed to send tokens over the network only
if the credit is positive; otherwise it blocks. This implements
the blocking write behavior. On the consumer side, for every
token consumed from that channel, a virtual token (VT) is
sent back to the producer via the virtual connector. For every
virtual token received on the producer tile, the credit of the
corresponding channel is increased by one. In this way the
producer is constantly updated about the status of the remote
FIFO buffers.

The pseudocode of the VC approach is shown in Figure 5.
Both the read and write primitives use an auxiliary function,
process NI msgs(), that is used when blocking on read or on
write. This function checks the status of the NI buffer for
incoming packets. If the buffer is not empty, it processes one
packet at a time, until all the incoming packets are consumed,
in the following way. If the packet is an incoming token for
channel i, it stores the token in the software FIFO which
implements channel i. If it is a virtual token for channel j,
it consumes the packet and increases the credit of channel j.

In Figure 5, lines 1-2 of the read primitive implement the
blocking read. If the FIFO buffer corresponding to the calling
channel (in the example, CH1) is empty, process NI msgs() is
executed until new tokens for that channel reach the NI input
buffer. Lines 3 and 4 complete the read primitive; the token is

PPN process

read (in1, CH1);

out = F(in1);

}}
write (out, CH3);

read(token, ch)

(1) while (fifo[CH1] is empty)

(2)

   fifo get(in1, fifo[CH1]);

write(token,ch)

process NI msgs();

(4) send virtual token(CH1);

for (i = 0; i < M; i++) {
for ( j = 0; j < N ; j++) {

(1) while (credit[CH3]==0)
(2)

(3) decrease credit[CH3];
(4) send token(out, CH3);

process NI msgs();

(3)

Figure 5: Pseudocode of the VC approach.

transferred from the software FIFO to in1, and a virtual token
is sent back to the producer of CH1. This is actually done
by putting in the NI outgoing buffer a packet representing a
virtual token for channel CH1, as shown in Figure 12.

Similarly, in the write primitive in Figure 5, lines 1-
2 implement the blocking write behavior. If the credit is
zero, process NI msgs() is executed. If virtual tokens for the
blocked channel are received, the credit is then increased and
this condition unblocks the write to that channel. Lines 3-4
complete the write procedure. The credit for the considered
channel is decreased, and the token is sent over the network,
which is actually done by putting in the NI outgoing buffer a
packet representing the token (refer again to Figure 12).

3.4. Virtual Connector with Variable Rate Approach (VRVC).
This approach represents a variant of the virtual connector
described above. The basic idea is that instead of sending one
virtual token to the producer for every consumed token of
channel i, the consumer sends it after ni consumed tokens,
where ni is a parameter that can be set such that for all
i ∈ {1, . . . ,Nch} 1 ≤ ni ≤ size(Bi), where Nch represents the
number of channels in the PPN graph. The credit variable for
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Figure 6: Producer-consumer implementation: when using the VRVC, the producer receives back virtual tokens (a); when using R, it receives
requests (b).

channel i will then be increased by ni for every virtual token
received for that channel. This approach leads to a reduced
traffic on virtual connectors, which can be beneficial in NoC
implementations to avoid congestion of packets.

Since the sending back of virtual tokens does not happen
for every consumed token, in some cases, the PPN graph
properties require to store, also at the producer side, tokens
for the channels in order to avoid deadlocks. This requires the
adoption of software FIFO buffer also on the producer side.
In the most generic case, the size of these buffers should be as
large as the original buffer in the PPN graph. This means that
for all i ∈ {1, . . . ,Nch} size(BP

i ) = size(BC
i ) = size(Bi), as

depicted in Figure 6, case (a). The pseudocode for the VRVC
approach is omitted for the sake of brevity.

3.5. Request-Driven Approach (R). This method is very
similar to the approach used in [23] for realizing the FIFO
communication on the Cell BE platform. In this approach,
the transfer of tokens from the producer tile to the consumer
tile is initiated by the consumer. This means that every time
the consumer is blocked on a read at a given FIFO channel,
it sends a request to the producer to send new tokens for that
channel. The producer, after receiving this request, sends as
many tokens as it has in its software FIFO implementing that
channel.

Since also in this case we need to store tokens both
on the producer side and on the consumer side, we need
software FIFO structures on both sides. The size of these
buffers is set, for each channel i, to match the size of the
queue in the original PPN graph (Bi), such that for all i ∈
{1, . . . ,Nch} size(BP

i ) = size(BC
i ) = size(Bi). This condition

guarantees deadlock-free execution on the NoC, and it is the
same as in the VRVC approach. The structure of a producer-
consumer pair using the R approach is shown in Figure 6,
case (b). Since the consumer buffer of a channel is empty
when a request is made, and given that the FIFO buffers
for that channel have the same size on both sides, there is
always enough space to store tokens sent by the producer as
a consequence of the request.

PPN process

read (in1, CH1);

out = F(in1);

write (out, CH3);

read(token,ch)

(1) if (fifo[CH1] is empty)
(2) 

(3) while (fifo[CH1] is empty)

(4) 

   fifo get(in1, fifo[CH1]);

write(token, ch)

(2) 

   fifo put(out, fifo[CH3]);

(4)

}}

for (i = 0; i < M; i++) {
for ( j = 0; j < N ; j++) {

send request(CH1);

process NI msgs();

(5)

process NI msgs();

(1) while (credit[CH3]==0)

process NI msgs();

(3)

Figure 7: Pseudocode of the R approach.

Figure 7 shows the pseudocode of this communication
approach. Similarly to the VC approach, it makes use of
the auxiliary function process NI msgs() to process incoming
packets of tokens or requests. The main difference in this
case is that this function is in charge of reacting to a
received request message for a channel with the immediate
sending of all the tokens contained in the software FIFO that
implements that specific channel.

The blocking on read behavior is implemented in lines
1–4 of the read primitive in Figure 7. When the software
FIFO of the calling channel is empty, a request is sent to
the producer tile of that channel, and the processor keeps
executing process NI msgs() until a packet of tokens for the
calling channel arrives. The blocking on write is implemented
in lines 1-2 of the write primitive in Figure 7. When the
FIFO of the calling channel (in the example, CH3) is full, the
processor keeps executing process NI msgs() until a request
for that channel arrives.

4. Process Migration

This section provides a description of the proposed PPN
process migration mechanism over the NoC-based MPSoC
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Table 1: Middleware table example.

ch prod(ch), cons(ch) map(prod(ch)), map(cons(ch))

1 P1, P2 Tile0, Tile1

2 P2, P3 Tile1, Tile2

system. It is a fundamental part of the middleware depicted
in Figure 1 because it realizes the run-time remapping of
processes, which in turn allows system adaptivity strategies.

The migration mechanism depends on the considered
communication approach. As a starting assumption to devise
the migration mechanism, we consider the request-driven
(R) communication approach described in Section 3.5.
This choice is made because the R approach leads to a
considerably easier implementation of the migration mech-
anism since it requires less synchronization points. At the
same time, it gives performance comparable to the other
approaches for computation-dominant applications, as will
be shown in Section 5.

We recall that to take into account the run-time remap-
ping of processes over the NoC, each PE stores in its local
memory a middleware table which is used to refine the
generic communication primitives to mapping-dependent
function calls. An example of a middleware table generated
for the initial mapping in Figure 8 is given in Table 1. For each
channel of the PPN, the producer and consumer process IDs
are stored, together with their current mapping in the system.
Auxiliary information, for instance, pending requests during
migration execution, is also saved for each channel.

Mainly two kinds of process migration mechanism can be
considered, namely, process replication and process recreation.
In process replication, the program code of a process that can
be migrated is copied in each tile, thereby creating replicas
of the process. When a process needs to be migrated from
one tile to another, the process is suspended on the first tile
and restarted on the second. The state of the process must be
copied from the first tile to the second because the process
cannot be just restarted from scratch.

The second kind of process migration mechanism is
based on the so-called process recreation. In this case, if a
migration is needed, the process is killed on the original tile it
runs and created on another tile by moving both the process
code and state. The OS/middleware in this case must support
dynamic loading of processes to processors. This way, only
one instance of the process code exists at a given time in the
system.

On the one hand, the process replication mechanism is
less efficient in terms of memory usage, compared to the
process recreation. On the other hand, it offers significant
advantages such as easier implementation and faster migra-
tion procedure. We chose the process replication mechanism
because we consider the fast execution of process migration
more important. Moreover, the memory constraint in our
system is not critical.

A simple diagram showing the migration of a PPN
process is depicted in Figure 8. Even though this is a simple
example, it can be easily generalized for more complex PPN

topologies. The diagram highlights the tiles involved in the
process migration procedure, which are referred to as:

(i) the source tile, namely, the tile which runs the process
before the migration takes place,

(ii) the destination tile, which is the tile that will execute
the process after the migration,

(iii) the predecessor tile(s), which run(s) the predecessor
process(es), and

(iv) the successor tile(s), which executes the successor
process(es).

The structure of PPN processes, modified to allow migra-
tion at any point during the execution of the process main
bodies, and the proposed process migration mechanism are
described in the following two subsections.

4.1. Migratable PPN Process Structure. Our goal is to allow
the migration to be performed at any time during the
execution of the process main body, in order to improve
the migration response time. To this end, we extend the NI
interface of a tile with the ability to generate an interrupt for
the processing element when a message with a reserved tag
is received. This extension is made because the detection of
migration decisions by polling at specific migration points
in the code may cause undesired latency in the migration
procedure.

With the requirement that migration may happen at any
point within the execution of the processes main body, we
devise the structure of a migratable PPN process as shown in
Figure 9. It is based on the structure shown in Figure 3(b),
which we will refer to as basic process structure.

We comment and motivate the migratable PPN process
structure shown in Figure 9 in the following. When the
thread starts, in line 1, it checks if the migration flag is set.
If the checking is positive, it means that a migration has been
performed, so the process state is reloaded.

Since the PPN model definition requires a stateless
process function, for example, F2 in Figure 9, that is, a
function whose execution does not depend on the previous
iterations, the state of a PPN process is represented only by:

(i) the content of its input and output FIFOs;

(ii) its iterator set, namely, the values of the nested loop
iterator variables, see (i, j) in Figure 9, lines 2-3.

When a function requires to have a state, it is represented in
the PPN model by a stateless function with FIFO self-edges,
which represent the function state.

Both state components listed above are transferred from
the source tile to the destination tile upon migration. If the
migration flag is false, it means that the process starts from
scratch, with empty input and output FIFOs and i0 = j0 = 0.

Lines 2 and 3 differ from the basic process structure in
Figure 3(b) because the iterators inside the for loops do not
start from zero in case of migration. Instead, they start from
the values i0 and j0, which represent the iteration at which
the process was interrupted by the migration while running
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Figure 8: Migration diagram.

Migratable process

(1) if (migration) resumeState;

(3) 

(4)       acqData(CH1);          //RD-1
(5)       read(in, CH1);           //RD-2

(6) 

(7)       acqSpace(CH2);        //WR-1
(8)       write(out, CH2);       //WR-2
(9)       relData(CH2);           //WR-3
(10)     relSpace(CH1);         //RD-3

Migration 
disabled

Main 
body

}
(11) } reset j0;

(2) for(i = i0; i < M; i++) {
for( j = j0; j < N ; j++) {

out = F2(in);

Figure 9: Migratable PPN process.

on the source tile. After the first complete execution of the
inner for loop, starting from j0, the value of j0 is set to zero
in line 11 such that the next execution of the inner loop starts
correctly with j = 0.

The communication primitives are different from the
ones used in the basic process structure. The read primitive,
for instance, is split into three separate operations (see lines
4, 5, and 10). First, the input channel (CH1) is tested to verify
the presence of an available data token, using the acquireData
function (acqData(CH1) in line 4). Then, the token is
actually copied from the software FIFO to the input variable
which will be processed by the process function F2. The
copy operation is performed in line 5. However, differently
from the normal read primitive, the memory locations
occupied by the read token are not released immediately.
The actual release, which consumes the data from the FIFO

by increasing the read pointer, takes place only in line 10
(relSpace(CH1)). This way, if a migration is triggered before
the release instruction, the process can be correctly resumed
on the destination tile since it will read again the same input
token, because the read pointer is not changed. Similarly, the
write primitive is split in three operations, see lines 7, 8, and
9, of which only relData affects the write pointer. Finalizing
the read and write operations at the end of an iteration allows
the process migration to happen anywhere within lines 4–8
correctly. Note that, in case of multiple input or output
channels, the release operations should be grouped together
and placed right after the main body of the process, in order
to guarantee a consistent process state.

Process migration cannot happen within the lines 9–11
and 2-3 because that would cause an inconsistency in the
migrated process state. This is because lines 9 and 10 can
be considered as an update of the output and input FIFOs
state, while lines 11, 2, and 3 represent the iterator set
update. If, for instance, a migration happens after the FIFO
state update but before the iterator set update, the migrated
process will restart the execution with the FIFO status
corresponding to the next iteration, but with the iterator set
of the current (interrupted) iteration. This condition will
certainly cause a deadlock. Although the process migration
cannot happen within lines 2-3 and 9–11, we note that these
sections represent a minimal part of the process execution,
because performing the update of read and write pointers
and iterator sets is a matter of a few simple instructions.
Therefore, disabling the migration within these sections does
not increase the response time significantly.

The principle behind the proposed migratable process
structure is that the state of a process must be consistent
and up-to-date when a migration is performed. This allows
the migrated process to correctly resume its execution on
the destination tile. Leveraging the PPN process structure,
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our approach does not require the designer to specify the
context that has to be transferred upon migration as in
[9]. This burden is neither moved to the OS/middleware
level as in [10]. Determining the state to be migrated is not
needed because the PPN process state simply consists of the
two components described above. Moreover, our approach
does not need designer-generated checkpoints/migration
points. The resource manager in Figure 8 can interrupt
the process execution at any time during the execution
of the process main body. The migrated process will then
resume its execution from the beginning of the interrupted
iteration. On the one hand, this implies that if the migration
is triggered in the middle of the function execution, the
time since the start of the iteration is lost. On the other
hand, this approach leads to a more efficient implementation
and predictable migration response time, which we consider
more important for our goals.

4.2. Process Migration Mechanism. The migration mecha-
nism requires actions from all the tiles depicted in Figure 8.
The migration decision is taken by the resource manager,
which sends a specific control message to the source tile.
How the resource manager takes the migration decision is
out of the scope of this paper because we focus on the process
migration mechanism itself. The source tile then broadcasts
this control message to the destination, predecessor, and
successor tiles to complete the migration procedure.

The control messages which notify the process migration
to the involved tiles contain the ID of the migrated process
(ctrl msg.migProc ID) and the new mapping of that process
(ctrl msg.dest PE). On all of the involved tiles, and on the
resource manager, the middleware tables are then updated
by executing the following operations, for each channel in
the list:

(i) if (prod(ch)==ctrl msg.migProc ID)
update map(prod(ch)) to ctrl msg.dest PE,

(ii) if (cons(ch)==ctrl msg.migProc ID)
update map(cons(ch)) to ctrl msg.dest PE.

For each of the tiles involved in the migration procedure,
the detailed list of required actions is explained below.

4.2.1. Actions on the Source Tile. On the source tile, the
process has to be stopped, and its state saved and forwarded
to the destination tile. Moreover, the middleware table is
updated as described above. The source tile takes also care of
propagating the migration decision to the other tiles involved
in the migration procedure. This propagation is depicted by
the dashed arrows in Figure 8.

4.2.2. Actions on the Destination Tile. The destination tile
receives a specific message for process activation. The
migration procedure is handled by creating the required
software FIFOs and by activating the replica of the migrated
process using the corresponding OS call. Before the process
replica is started, the migration flag is set to 1 so that the state
of the migrated process is resumed (see line 1 in Figure 9).

This implies that the input and output FIFOs of the migrated
process are copied, and the iterator set (in the figure, i0 and
j0) is set such that the execution starts from where it was
suspended on the source tile. The middleware table is also
updated in the way described above.

4.2.3. Actions on Predecessor Tile(s). On these tiles, the
only required step is the update of the middleware tables
according to the new mapping of the migrated process. This
way, new tokens meant for the migrated PPN process, will be
sent to the destination tile.

A corner case of the communication between the
migrated process and its predecessors may happen when the
process has sent a request for new tokens just before the
migration command arrives. If that request has been served,
it means that new tokens are either traversing the NoC or
they are already stored in the source tile. The predecessor tile
in this case has to send another interrupt-generating message
to the source tile, in order to force the forwarding of these
data tokens to the destination tile.

4.2.4. Actions on Successor Tile(s). Similarly, the successor
tiles have to update the middleware tables so that the new
requests for data tokens will be sent to the destination tile.
A particular case in the protocol between successor processes
and the migrated process is represented by requests which are
sent to the source tile just before the interrupt decision takes
place. In this case, if the requests are not served before the
migration, they have to be forwarded to the destination tile.

5. Experiments and Results

In order to evaluate the proposed middleware, we perform
two experiments to assess both its main components. In
the first experiment, described in Section 5.2, we compare
the efficiency of the different approaches for the PPN
communication API in two case studies. In the second
experiment, described in Section 5.3, we assess the process
migration benefits and overhead by applying our migration
mechanism in one of the case studies. Before presenting
these two experiments, we describe the case studies and the
experimental setup that we used to obtain the results.

5.1. Case Studies and MPSoC Platform Setup. We evaluate the
three communication approaches presented in Section 3 on
two applications modeled as PPNs with extremely different
communication/computation characteristics. The reason is
that we want to compare the overhead of the different
approaches between two extremes. The Sobel filter appli-
cation described in Section 5.1.1 represents the worst case
(the first extreme), when the computation/communication
ratio is low and the PPN topology is complicated. The M-
JPEG encoder application described in Section 5.1.2, on the
other extreme, is computation dominant and with relatively
simple PPN topology, therefore, represents the best case. We
describe briefly the two case studies in order to allow a better
understanding of the obtained results. We also provide an
overview of the platform that we use to run the experiments.
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Figure 10: PPN specification of the Sobel filter.

Table 2: Execution times of sobel functions.

Process Execution time (c.c.)

ReadPixel 5

Gradient X 31

Gradient Y 31

absValue 118

WritePixel 5

5.1.1. Sobel Filter. The Sobel application is an edge-detection
algorithm for digital images. Its PPN graph is shown in
Figure 10, where the numbers over edges indicate the
minimal buffer sizes needed for processing a 200 × 122
pixel input image. The PPN processes which comprise this
application are very lightweight in terms of computation.
The numbers of clock cycles required for one execution
of each function are summarized in Table 2. For all of
the channels in the graph, the size of exchanged tokens is
4 bytes, and the number of written tokens is 23760. From
these metrics, it is clear that the Sobel application is largely
communication dominant.

5.1.2. M-JPEG Encoder. The PPN specification of this
application is shown in Figure 11. The size of tokens
ranges between 16 and 1024 bytes, and all of the channels
are written 128 times, except the output of initVideoIn
which is written only once. The numbers of clock cycles
required for the execution of each function of the M-JPEG
application are summarized in Table 3. This application
shows a much simpler communication and synchronization
pattern compared to Sobel, and it also has a much higher
computation/communication ratio.

5.1.3. MPSoC Platform Setup. The system on which we
evaluated our communication approaches is based on a
2 × 2 mesh of tiles, connected via a Network-on-Chip. Each
tile is composed by a MicroBlaze processor, with its local

Table 3: Execution times of M-JPEG functions.

Process Execution time (c.c.)

initVideoIn 18

videoIn 1910

DCT 126386

Q 69238 (avg)

VLE 46688 (avg)

videoOut 1292 (avg)

program and data memories, and a network interface. The
platform does not support remote memory access.

The network interface contains only two hardware
FIFOs, one for packets which are incoming from the NoC,
and one for packets that have to be injected in the NoC. The
processor is able to quickly access the status of the incoming
hardware FIFO, via a dedicated signal, to see if there are
messages to be forwarded from the NI buffer to the SW
FIFO buffers that implement channels of the PPN graph. In
the opposite direction, when a packet has to be sent over
the NoC, the processor forwards data from its local data
memory to the outgoing NI hardware FIFO. Then the NI
injects the packet in the network with the appropriate header
(destination tile and payload size fields). The packets are sent
over the NoC using wormhole routing.

The actual structure of the different kind of messages
that are sent over the NoC is represented in Figure 12 for
the VC and R communication approaches. At NoC-level, the
packet comprises a NoC header that indicates the destination
tile and the size of the payload, and the payload itself,
which is the middleware-level packet (denoted as MW-level
packets in the figure). The structure of middleware-level
packets depends on the communication approach. In the R
approach, a request for channel number i is implemented
as a single flit, with value −i. By contrast, a packet used
for transferring tokens has a header composed of two flits
(channel number, number of sent tokens) and a payload
with the sent tokens. The field that indicates the number
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Figure 11: PPN specification of the M-JPEG encoder.

of sent tokens (n tokens) is necessary because this number
is determined at run time, when a request for that channel
is received. The structure of middleware-level packets in
VC is very similar, the only difference is that there is no
need for a n tokens field because in this method there is no
packetization of tokens; that is, n tokens is always equal to
one.

5.2. Inter-Tile Communication Efficiency. The MPSoC plat-
form described in Section 5.1 has been implemented on a
Virtex5 FPGA prototyping board. We run the two applica-
tion case studies using all the communication approaches
proposed in Section 3 to obtain the results described below.
The experiments for process migration are also described
later in this section. Note that the proposed migration
mechanism is generic, meaning that it is not dependent on
a particular NoC implementation.

In order to compare the efficiency of the inter-tile
communication of the different communication approaches,
we execute the two case study applications with fixed
mappings shown in Figure 13. We chose these mappings
because they expose the maximum amount of inter-
tile communication. Therefore, the obtained results are
largely dependent on the efficiency of the communication
approach.

We found out experimentally that the parameter ni
of the VRVC approach gives the best performance when
it is set to its maximum value, that is, when for all
i ∈ {1, . . . ,Nch} ni = size(BC

i ). The performance results,
summarized in Figure 14, show a large difference of the
execution time for the Sobel application when using different
communication approaches. However, in the M-JPEG case,
all of the communication approaches yield to similar per-
formance results. The VC approach performs much better,
compared to the others, in the Sobel application because
its implementation does not require storing of tokens on
the producer tile. This leads to a faster communication
process because it avoids the double copy (output variable
→ software FIFO → NI buffer) that is necessary in the other
cases. We argue that the obtained results may change for NoC
platforms with direct memory access (DMA) cores that can
benefit more from the packetization of tokens allowed in the
VRVC and R approaches.

In order to evaluate the overhead imposed by the
use of the NoC interconnection and our communication
approaches, we implemented customized point-to-point
systems, for both applications, as a baseline reference. In
point-to-point systems, generated using the ESPAM tool
[14], a dedicated hardware FIFO is instantiated for each

channel of the PPN graph. In this way, the hardware platform
perfectly matches the PPN MoC semantics. Obviously,
customized point-to-point implementations do not allow
for system adaptivity because all the design decisions (e.g.,
process mapping) have to be made at design time. It is
clear that in our NoC system we sacrifice performance
(especially for communication intensive applications) for
adaptivity, the ability of managing the system at run time,
and generality, since the system is able to execute any kind
of application modeled as PPN. The performance slowdown,
when comparing the NoC system with the point-to-point
systems, is shown in Figure 15. It is noticeable that the
Sobel application is highly penalized in the execution on our
NoC system, whereas the M-JPEG application performs well
because of its higher computation/communication ratio and
its regular communication pattern.

The reasons why the communication onto the NoC
platform is less efficient are mainly twofold. The first reason
is that, in this implementation, several PPN channels have to
share the same physical channel (the NoC link). The second
reason is a consequence of the first one. In the NoC case,
the presence of only one physical link, being shared between
different PPN channels, poses the need for a flow-control
policy. To optimize for low hardware overhead, we chose to
implement the control flow at the middleware level, based
on software FIFOs on the producer and on the consumer
side. This requires additional memory copy operations to
dispatch/multiplex the communication tokens to/from the
correct software FIFO. Such copies are unnecessary in the
case of adoption of multiple point-to-point connections with
hardware FIFOs.

Another important metric when executing applications
on a NoC-based MPSoC is the amount of generated control
traffic overhead. In the VC case, for instance, this overhead
is represented by the NoC-level and MW-level headers,
together with all the traffic generated by the virtual tokens.
Ideally, the middleware should be designed to generate as less
control traffic overhead as possible.

Focusing on the Sobel application, since it has the
most complex communication pattern, we profiled the
amount of traffic injected in the network, depending on the
communication approach that is used. The results, depicted
in Figure 16, show two extremes: the VC and R approaches.
This large difference can be explained by two factors. The first
factor is the overhead of packet headers. On one hand, in
the VC approach, since there is no packetization of tokens,
each token travels in the NoC with its own header. On the
other hand, in the R approach, the producer sends as many
token as present in its software FIFO in the same packet
and therefore with the same header. The second factor is
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Figure 13: Fixed mappings for Sobel (a) and M-JPEG (b) to test the different communication approaches.
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that the traffic on virtual channels in VC is much more than
the traffic generated by requests in R. This is because in the
VC approach a virtual token is sent back to the producer
for every consumed token, whereas in the R approach the
requests are made less frequently, just when the consumer is
blocked on reading.
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Figure 15: Slowdown for different communication approaches.

5.3. Process Migration Benefits and Overhead. System adap-
tivity requires the ability to change the process mapping at
run-time in a predictable and efficient way. To illustrate the
benefits of our migration approach presented in Section 4,
we compare our proposed migration mechanism, driven
by interrupt-generating control messages, with a migration
approach based on migration points.

In the latter case, process migration can take place only
at fixed points in the code. The setup of this experiment is
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Figure 16: Traffic injected into the NoC by executing Sobel with
different communication approaches.

shown in the left part of Figure 18. We use as a case study the
M-JPEG application described in Section 5.1.2. Tile1 initially
runs all of M-JPEG processes, which are listed in Figure 19. P1

is derived by merging initVideoIn and videoIn processes, P2

and P3 represent, respectively, the DCT and Q processes, and
P4 is obtained by merging the VLE and videoOut processes.
We use the M-JPEG application as a case study because,
compared to the Sobel application, in M-JPEG processes
are coarse grained with high computation/communication
ratio, and therefore M-JPEG represents better the kind of
applications which are likely to be mapped on a NoC-
based MPSoC. The scheduling of the M-JPEG processes
on Tile1 before the migration is represented in Figure 17.
Scheduling charts have been obtained using the GRASP [25]
trace visualization tool to plot the information gathered at
run time. The trace shows the periodic scheduling which
is executed when all the processes are mapped on one tile
and the scheduling policy is data driven. The buffer size of
all the FIFO channels is set to two in this experiment. In
this scenario, the process scheduling iterates in the following
way. First, P1 executes two times, until it blocks on writing
because its output buffer is full. Then P2 is scheduled. It
completes two iterations, consuming the tokens created by P1

and producing two tokens for P3. It then blocks while reading
its input FIFO which is empty by then. Similarly, P3 and
P4 execute twice before blocking on read. This scheduling
repeats until the end of the application execution if no
migration is performed.

In Figure 17, the arrows over the bars of process P1

represent the start of an iteration of that process (for the sake
of clarity, see line 4 in Figure 9). Assume that these points
correspond to migration points, namely, where the process
checks if migration messages have been sent by the resource
manager. Given that the migration request can reach Tile1

at any time, the latency of the actual process migration
can vary. In the best case, the migration request reaches
the tile right before a migration point. In the worst case,
the migration request arrives just after a migration point,

for instance, the one which is reached around clock cycle
275,000. The actual migration would not take place until the
next migration point, which happens to be after 2 executions
of P3, P4, and P1, and one execution of P2. In this simple
case, an upper bound of the process migration response time
can be found, based on the process scheduling, which in
turn depends on the workload of processes, the buffer sizes,
and the scheduling policy. In more complex cases, where
the scheduling on one tile is affected by the scheduling on
other tiles because of data dependencies, even finding an
upper bound for the response time practically would not be
possible.

By contrast, the interrupt-driven migration mechanism
that we propose in Section 4 has a predictable behavior. As
shown in Figure 18, the system has a faster response time
to migration requests. At time τ1, which is the worst case
for the fixed-point migration strategy discussed above, the
resource manager sends a control message which triggers
the migration of P2 to Tile2. The process can be restarted
on the destination tile within a predictable amount of time
represented by the difference (τ1−τ2). This is the time it takes
the source tile and the destination tile to execute the steps
described in Section 4, such as the movement of the process
state and the activation of process P2 on the destination
tile. This migration overhead in time (τ1 − τ2), as shown
in Figure 18, is way smaller than a single execution of the
DCT function in process P2. The migration procedure in this
example actually takes less than 12% of a single execution of
the DCT process.

Note that an upper bound of the migration procedure
overhead can be derived for guaranteed throughput (GT)
NoCs. In fact, the migration duration Tmig of a process P ∈
P can be split in two main components:

Tmig(P) = TstateMig(stateSize(P) ) + TprocAct, (1)

TprocAct is a constant value which represents the time required
to activate the migrated process using OS system calls, to
update the middleware table, and complete all the actions
described in Section 4 on the destination tile. TstateMig is the
time it takes to transfer the state from the source to the
destination tile. Its worst case, for GT NoCs, depends only on
the state size. The largest state size of a process P is obtained
when both the input and output FIFO buffers of P are full.
This worst-case value can then be derived from the PPN
topology and buffer sizes

max(stateSize(P)) =
∑

ch∈IOCP

size(B(ch)), (2)

where IOCP = ICP ∪ OCP as defined in Section 3.1,
size(B(ch)) is the size of the buffer which represents the
channel ch on the source tile. The value size(B(ch)) is
obtained by multiplying the number of tokens of B(ch) by
the token size of a channel ch. An upper bound of the
migration time Tmig of a process P can be calculated using
max(stateSize(P)) in (1).

The worst case, for our interrupt-driven migration
mechanism, is represented by the arrival of a migration
request just before the end of a function execution in a
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Figure 18: M-JPEG process scheduling while migrating P2 using the proposed migration mechanism.
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Figure 19: Execution time and generated traffic as a function of the
process mapping. Only inter-tile communication links are depicted.

process that has to be migrated. In this case, the migration
still takes place in a predictable amount of time but the
process execution has to roll back to the beginning of the
interrupted iteration. All the time spent in the function
execution is wasted in this scenario.

The proposed process migration mechanism allows our
system to change its configuration at run time. The resource
manager triggers process migrations such that the system
dynamically moves from the configuration (a) to (b), then

to (c) in Figure 19. By doing this, the resource manager
is capable of changing, at run time, the total execution
time (Texe in Figure 19), and total exchanged traffic over
the NoC (NoC traffic in Figure 19). Both Texe and NoC
traffic correspond to the processing of a single input frame
using the M-JPEG application. The resource manager, for
instance, can decide to change system configuration because
of a quality of service requirement demanded at run-time by
the user.

In detail, in Figure 19(a), all the processes of the M-JPEG
application are executed on one tile, and the communication
between processes does not happen via the NoC. In this
configuration, the execution time per one frame is Texe =
33.073 millions of clock cycles. However, in Figure 19(b),
processes P1, P3, and P4 are executed on one tile, and process
P2 runs on a separate tile. Since process P2 (the DCT) is the
most computationally intensive in M-JPEG, accounting for
51% of the total workload, the obtained speedup compared
to (a) is close to 2. In fact the execution time per frame drops
to Texe = 17.342 millions of clock cycles. The mapping in
Figure 19(c) does not show a relevant further performance
improvement because P2 represents the bottleneck of the
M-JPEG application, such that even just migrating it to a
separate tile as in (b) gives almost optimal performance.
This experiment shows the efficiency of the proposed process
migration procedure. The system is allowed to substantially
change its execution time per frame, at run time, with an
almost negligible overhead. As explained above, the process
migration overhead is way smaller than a single execution
of the DCT process. The negligible performance speedup



16 VLSI Design

obtained when changing the system configuration from (b)
to (c) does not depend on the migration overhead. It is
actually caused only by the intrinsic structure of the M-JPEG
application.

6. Conclusions

This paper proposes a middleware support for the execu-
tion of polyhedral process networks on Network-on-Chip
MPSoCs allowing system adaptivity. Two main middleware
components have been devised and implemented.

The first one is the PPN communication API, which
realizes the PPN semantics on NoC implementations. Three
communication approaches have been evaluated experi-
mentally on two applications with very different computa-
tion and communication characteristics. The results show
that the virtual connector approach outperforms the oth-
ers when implementing communication-dominant appli-
cations. However, especially for this kind of applications,
the price we pay for system adaptivity and generality is
large in terms of performance, if compared to customized
point-to-point systems. On the contrary, when the compu-
tation/communication ratio of an application is higher, the
overhead introduced by the execution on NoC with all the
proposed communication approaches is much lower.

The second middleware component concerns the process
migration procedure, which is essential for system adaptivity.
A reactive and predictable process migration mechanism
has been devised and developed. The proposed mechanism
does not need user-specified checkpointing since it exploits
the simple structure of PPN processes, whose state is only
represented by iterator sets and the content of input/output
FIFO buffers. Moreover, it allows the execution of a migra-
tion at any time during the execution of the main body of
processes, since it does not rely on fixed migration points.
The proposed migration mechanism is predictable because
an upper bound of its overhead can be derived, for GT
NoCs, from the process network topology and buffer sizes.
Moreover, we show using the M-JPEG application case study
that the migration mechanism allows the system to change
its performance metrics at run time with almost negligible
overhead.
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