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Abstract—In this paper, we propose a very accurate energy
model for streaming applications modeled as Polyhedral Process
Networks (PPN) and mapped onto tile-based MPSoC platforms
with distributed memory. The energy model is based on the well-
defined properties of the PPN application model. To guarantee
the accuracy of the energy model, values of important model
parameters are obtained by real measurements. The proposed
energy model is applicable to different types of processors and
communication infrastructures within an MPSoC platform. The
energy model is evaluated on FPGA-based MPSoC platforms
against real measurements of energy consumption from the
FPGA. The obtained energy estimates are highly accurate with
an average error of 4% and a standard deviation of 3%. The
average model evaluation time per design point takes 2.5 minutes
for considered cases, which is very good given the high accuracy
of the model.

I. INTRODUCTION

The continuous increase in user demands and very fast
technology improvement have led to more and more com-
plex embedded systems. Nowadays, most embedded systems
are based on Multi-Processor System-on-Chip (MPSoC) plat-
forms. To exploit the parallel nature of these platforms, appli-
cation behavior is usually specified using a certain parallel
Model of Computation (MoC), in which the application is
represented as parallel executing and communicating tasks.
Finding an efficient application-to-platform mapping is the key
issue for optimizing the energy consumption and performance
of these systems. Since there are many possible application-
to-platform mapping combinations forming a design space,
this design space should be efficiently explored by using
high-level system performance/energy models. Early in the
design process of a system with certain performance/energy
requirements, the design space is very large and decisions
taken at higher level of abstraction have greater impact on
the final design in terms of system performance and energy
consumption. Therefore, high-level performance/energy mod-
els of a system should be accurate enough to steer the selection
of optimal design points (under given constraints) in the right
direction. Model accuracy is usually traded-off for modeling
and evaluation effort. Especially accuracy of energy models is
very important as the International Technology Roadmap for
Semiconductors (ITRS) [1] reports that the power/energy con-
sumption is the dominating constraint in the new generations
of embedded systems.

In the embedded systems domain the research and results
on performance modeling are very mature, while the research
on system-level power/energy modeling and estimation has
received attention only in recent years. So far, research on
power/energy modeling has been mainly done for a single
system component in isolation [2]–[12]. Only in a few cases,

the power/energy consumption of the whole system has been
modeled [13]–[18]. However, in most cases power/energy
consumption due to the contention on shared resources is
not considered. Moreover, in most cases, characterization and
validation of the models have been done by using lower-level
simulators or data-sheet values [2], [6], [7], [11]–[13], [15],
[18], with usually questionable accuracy. Therefore, in order
to find accurately an energy optimal application-to-platform
mapping: 1) the energy model should describe the system as
a whole and take into account the parallel nature of MPSoCs
and possible energy consumption due to contention on shared
resources; 2) the energy modeling and estimation should be
done with high level of accuracy and efficiency.

For the above mentioned reasons, in this paper, we address
the problem of accurate and efficient energy modeling of an
application-to-platform mapping. We solve the problem in case
when a streaming application is modeled using the Polyhedral
Process Network (PPN) [19] MoC and mapped onto a tile-
based MPSoC platform with distributed memory. Our energy
model describes the system as a whole as well as it considers
and models accurately the energy consumption due to data
communication among the processors in a platform and the
contention on non-contention-free communication infrastruc-
tures. The model is based on the well-defined properties of
the PPN application model and the values of important energy
model parameters are obtained by real measurements of energy
consumption for the accuracy reason. The energy model is
integrated in the existing Daedalus design flow [20], enabling
a system designer to explore a large design space starting from
a high-level description of the system behavior and having
energy consumption as a primary design constraint.

A. Paper contributions

The major contribution of this paper is a novel energy
model for streaming applications mapped onto MPSoC plat-
forms that: 1) considers the system as a whole; 2) is very ac-
curate; 3) is applicable to contention-free and non-contention-
free communication infrastructures; 4) models total (static and
dynamic) energy consumption; and 5) is applicable to different
types of processors.

B. Related work

Research on power/energy modeling has been mainly done
for individual system components in isolation – processors [2]–
[7], memories [8], interconnections [9]–[12]. In contrast, our
energy model models the system as a whole and thus enables
more accurate energy estimation and exploration of different
application-to-platform mappings.

978-1-4799-0103-6/13/$31.00 ©2013 IEEE 205



Only a few papers deal with power/energy modeling of
the whole system. [13] analyzes power distribution among
components in a homogeneous shared bus based MPSoC
platform. There is no accuracy information for any model of
a component in the system. In contrast, our energy model is
more general in the sense that it can model platforms with
contention-free and different configurations of non-contention-
free communication infrastructures. In addition, we provide ac-
curacy information concerning the obtained energy estimates.

[14] presents the performance and power modeling of
multi-programmed multi-core systems. It is assumed that there
is no data dependency between the processes running on a
platform. The model is characterized and validated by real
measurements. However, real applications usually consist of
data dependent processes, and thus the energy consumption
due to communication between the processes should be con-
sidered. In contrast to [14], our model considers the data
dependency between the processes, and hence the energy
consumption due to interprocessor communication is modeled.

[15] presents a multi-core power modeling and estimation
tool flow which consists of two tools: PowerMixerIP , an IP
power model builder, and PowerDepot, a power estimation tool
which generates and embeds power monitors into a SystemC
simulation environment. Power model characterization and
validation are done by using transistor-level and gate-level
simulations. Authors report average power estimation error
of 2% compared to gate-level simulations which accuracy is
not known. In addition, the contention on shared resources is
not discussed in [15]. In contrast, our energy model considers
contention on different kinds of non-contention-free commu-
nication infrastructures with the energy estimates close to real
energy measurements.

The FLPA power estimation methodology for MPSoCs is
presented in [16]. The power consumption estimation consists
of two parts: 1) power model development – a system is
divided into functional blocks, and the power consumption
is evaluated for selected activity parameters; 2) activity es-
timation and power calculation – a transaction level SystemC
simulator and an Instruction Set Simulator (ISS) are used
for detection of the activities. Models are characterized and
validated by real measurements. Power modeling of shared
resources and the contention on shared resources are not
discussed in detail. In contrast, we give a general methodology
for modeling the energy consumption for both contention-free
and non-contention-free communication infrastructures. By
considering the energy consumption due to the contention on
non-contention-free communication infrastructures we achieve
the energy estimates close to real energy measurements.

[17] proposes a top-down power and performance esti-
mation methodology for MPSoCs. The system architecture
is modeled by a set of resources – processors, memories,
interconnects and dedicated hardware resources. Each resource
is characterized by power and performance attributes. Power
costs of the power attributes are extracted from measurements.
There is no information about the accuracy of the proposed
model and modeling of contention on non-contention-free
communication infrastructures is not considered. In contrast,
our energy model is more detailed, and consequently highly ac-
curate with accuracy numbers obtained by comparison to real
measurements. In addition, our work considers various kinds
of communication infrastructures in the energy modeling.

In terms of application and platform models, the closest
work to ours is [18]. An application is modeled by a Kahn
Process Network (KPN) where every process has read, execute
and write events. The proposed power modeling technique
estimates the power consumption of an application-to-FPGA
MPSoC mapping based on ”event signatures”. The ”event
signatures” for execute, read and write events are used together
with a micro-architecture description, lower-level simulators
and some additional parameters obtained from literature and
through synthesis to calculate the power consumption of an
application-to-MPSoC mapping. The model is validated by
comparison to measurements. However, it is not clear how the
”scaling factors” used for pre-calibration of the power models
for interconnections and memories are obtained and what
the relation is between these factors and application/MPSoC
properties. This fact does not give high credibility to the
accuracy of the model. Moreover, the authors assume that
the data communication transactions performed by the KPN
application model are not interleaved at the architecture level.
In contrast, our energy model considers contention on shared
resources and its parameters are extracted from measurements,
which make the model very accurate. In addition, we do not
use scaling factors and thus the accuracy of our model is highly
credible.

The reminder of this paper is organized as follows: Sec-
tion II introduces the considered application and platform
models. The energy model formulation and the procedure
to extract the parameters of the energy model are given
in Section III. Section IV presents the results of empirical
evaluation of the proposed energy model. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

Since our energy model is based on the well-defined prop-
erties of the PPN application model and the MPSoC platform
model, in this section, we first present the PPN application
model, followed by the MPSoC platform model we consider.

A. Application model

An application modeled as a PPN [19] is a directed
graph A = (P, C) that consists of a set of processes P =

{P1, P2, ..., Pm}, which communicate with each other via a
set of communication channels C = {CH1, CH2, ..., CHk}.
Each channel in the PPN is a bounded FIFO and represents
one direction of data communication between two processes.
Here, a channel CHl = (Pi, Pj) represents a data dependency
between processes Pi and Pj where Pi is the producer and
Pj is the consumer process. A blocking read/write on an
empty/full FIFO is the synchronization mechanism in the
PPN MoC. An example of a PPN and the structure of its
process P3 is given in Fig. 1. Each process has a set of
channels it reads from, a set of channels it writes to, and
a function that represents a computation performed on input
data that generates output data. A read/write from/to a channel
is realized by blocking read/write primitives implemented in
software (SW) or hardware (HW). Fig. 2 gives the structure
of the read primitive implemented in software and hardware.
In case of the SW read primitive, blocking FIFO access is
implemented in software: check for data, see Fig. 2(a) lines
1, 3 and 4, read data, see Fig. 2(a) lines 5 and 6, and
release space, see Fig. 2(a) lines 7 and 8. In case of the HW
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(a)

P3

1  for (i=1; i<=16; i++) {

2     for (j=1; j<=8; j++) { 

3        READ(IP2, in2, size_d2);

4        if (j <= 3)

5           READ(IP1, in1, size_d1);

6        else 

7           READ(IP3, in1, size_d1);

8        out = F(in1, in2);

9        if (i <= 12 && j <= 4)

10         WRITE(OP2, out, size_d1);

11      else 

12         WRITE(OP1, out, size_d1);

      }

 }

CH2

CH3

CH4

CH5

(b)

Fig. 1. Example of a PPN (a) and the structure of process P3 (b).

SW

READ(IP, in, size_d) {

1  rcnt = IP[1];

2  while(1) {

3     wcnt = IP[0];

4     if (wcnt != rcnt) {

5        for(i=0; i<size_d; i++)

6           in[i] = IP[rcnt+2+i];        

7        rcnt += size_d;

8        IP[1] = rcnt;

9        break;

} } HW
READ(IP, in, size_d) {

1  for(i=0; i<size_d; i++)

2     readHW(in[i], IP);

}

(a) (b)

Fig. 2. The read primitive implemented in software (a) and hardware (b).

read primitive, blocking FIFO access is encapsulated in the
readHW function and realized in hardware, see Fig. 2(b).
The execution of a PPN process is a set of iterations, called
process domain. The process domain is represented using
the polytope model [21]. In the example given in Fig. 1(b),
the process domain of process P3 is given as the polytope
DP3 = {(i, j) ∈ Z

2 | 1 ≤ i ≤ 16 ∧ 1 ≤ j ≤ 8}. Accessing
an input/output port of the PPN process is represented as a
subset of the process domain, called input port domain/output
port domain. Process P3 reads data from input ports IP1, IP2

and IP3. The input port domain of input port IP2 is equal to
process domain DP3, while the input port domain of port IP1

is given as DIP1 = {(i, j) ∈ Z
2 | 1 ≤ i ≤ 16 ∧ 1 ≤ j ≤ 3}.

Process P3 writes data to output ports OP1 and OP2. Domain
DOP2 = {(i, j) ∈ Z

2 | 1 ≤ i ≤ 12∧ 1 ≤ j ≤ 4} is the output
port domain of port OP2.

By counting the integer points in the process domain
polytope, we can determine the number of iterations each
process function is executed. Similarly, by counting the integer
points in the corresponding input/output port domain we can
determine the number of read/write accesses for each channel
of a process. Counting of the integer points in a polytope can
be done automatically by using the Barvinok library in the pn
compiler [19]. The counting ability of the PPN model is used
in Section III-B for the computation of the so-called N energy
model parameters Nrj , Nwj and NFj . In the example given
in Fig. 1(b), by counting the integer points (i, j) in the process
domain DP3 we can see that function F is executed 128 times
and by counting the integer points in the port domains DIP1

and DOP2 we obtain that channel CH3 is read 48 times and
channel CH5 is written 48 times.

B. Platform model

In this work, we consider tile-based MPSoC platforms with
distributed memory. The generic architecture template of our
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Fig. 3. The architecture template of MPSoC platforms.

platforms is shown in Fig. 3. A programmable processor with
its local data and program memory, a timer and a bus bridge
constitute a processing tile within the platform. Different
processing tiles can have different types of processors. The
communication infrastructure consists of a contention-free or
non-contention-free communication component and distributed
communication memories (every tile has its own communica-
tion memory). A contention-free communication component
is a point-to-point (P2P) medium where every channel in
the PPN application model has its own communication link.
Non-contention-free communication components are mediums
with shared communication links – a shared bus (ShB) or a
crossbar switch (CB). Communication memories are assumed
to be dual-port memories. This means that the communication
memory can be accessed by its own processing tile and a
remote processing tile at the same time. The processing tile
produces data to its communication memory, locally accessing
it through the local data bus, and consumes data from its
own and/or other communication memories remotely through
the communication component. Within our platforms, HW
read/write primitives are used for P2P communication com-
ponents, while SW read/write primitives can be used for both
P2P and shared (CB, ShB) communication components.

More formally, a platform can be represented as a directed
graph P = (π,L), where π = {π1, π2, ..., πn} is a set of
n processing tiles (homogeneous or heterogeneous) and L ⊆
π × π is a set of physical communication links between the
tiles.

C. Application-to-platform mapping

The mapping of an application A = (P , C) onto a platform
P = (π,L) can be expressed as a tuple M = (Pn, Cn),
where Pn = {Pn

1
, Pn

2
, ..., Pn

n } is an n-partition of set P
defined in Section II-A, and Cn = {CHn

1
, CHn

2
, ..., CHn

k }
is a set of communication channels constructed from the set
C defined in Section II-A. A subset Pn

i represents the set of
processes mapped onto tile πi. These processes produce data
to the communication memory that is assigned to tile πi. If the
number of processes of a PPN is greater than the number of
processing tiles in a platform, then some of the tiles execute
more than one process. In this case, static schedule of processes
is derived for every tile. This is done automatically by using
the pn compiler [19]. Each channel CHn

l ∈ C
n corresponds
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to one channel CHl = (Pi, Pj) ∈ C and is given by a tuple
(proc(Pi), proc(Pj)), where proc(P ) represents the processor
on which process P is mapped.

Recall that in our platforms FIFO channels reside in
the communication memories and reading from channels is
performed remotely through the communication component,
while writing to channels is done locally by a processor
through the local tile’s bus on which the processor is the only
master, see Section II-B. This means that writing is always
contention-free, while reading is not because non-contention-
free communication component may be used in the platform.
In case of non-contention-free communication components,
for each application-to-platform mapping, we define Read
contention matrix R ∈ N

n×n as:

Rij =

{
1, ∃CHn

l = (πi, πj) ∈ C
n

0, otherwise
(1)

The matrix is used in Section III-B3 to analyze the influence
of contention on the energy consumption of an application-to-
platform mapping.

III. ENERGY MODEL

The proposed energy model is used to estimate the energy
consumption of a mapping of a streaming application modeled
as described in Section II-A onto an MPSoC platform modeled
as described in Section II-B. The energy model relies on the
properties of the PPN application model and the platform
model. The following subsections describe our energy model.

A. Model formulation

Without loss of generality and for the sake of clarity, we
assume in the following that each process within an application
is mapped to a different processing tile in a platform (i.e. the
number of processes is equal to the number of processing tiles).
In general, the proposed model is applicable to any application-
to-platform mapping given that multiple processes of an ap-
plication can be grouped and represented as a single process
by finding a sequential schedule between the processes, as
explained in Section II-C.

Since the PPN representation of an application is a set of
concurrent processes, we can express the energy consumption
of the application-to-platform mapping Eapp→pla as the sum
of energies consumed by processes EPj

:

Eapp→pla =

n∑

j=1

EPj
(2)

A PPN process reads input data from (a part of) input channels,
performs computation on input data and generates output data
which is further written to (a part of) output channels (see
Fig. 1(b)). Read and write accesses to channels are blocked if
required data is not available or if there is no space for new
data. Having this in mind, we can express the energy EPj

as:

EPj
= ERDj

+ EEXEj
+ EWRj

+ EBLKj
+ ECTRLj

(3)

where ERDj
and EWRj

are the energies consumed by reading
from and writing to channels without blocking, respectively;
EEXEj

is the energy consumed by performing the computation
in the process; EBLKj

is the energy consumed while the
process is blocked on read and write, and ECTRLj

is the
energy consumed by control structures in the process code.
In the example given in Fig. 1(b), ECTRLj

corresponds to the

control structures in lines 1, 2, 4, 6, 9 and 11. Further, ERDj

and EWRj
can be expressed as:

ERDj
=

∑

rj

Nrj (E
rj
RDj

+ c · Erj
c ) (4)

and

EWRj
=

∑

wj

Nwj · E
wj

WRj
(5)

where rj /wj is the number of channels process Pj reads
from/writes to; Nrj /Nwj is the number of times Pj accesses
each read/write channel, and E

rj
RDj

/E
wj

WRj
is the energy profile

of one read/write from/to a channel. Recall that in our plat-
forms writing to channels is local and reading from channels
is remote (Section II-B). This means that reading from chan-
nels may go through a non-contention-free communication
component and hence, energy consumed by reading from
channels contains the contention dependent part c ·E

rj
c . If the

communication component is contention-free, c is 0, if it is
non-contention-free, c is 1, while E

rj
c is the energy consumed

while Pj is waiting for data from channel rj when the
communication component is non-contention-free. Similarly to
E

rj
RDj

and E
wj

WRj
, EEXEj

becomes:

EEXEj
= NFj · EFj

(6)

where NFj is the number of times Pj executes its computation
function Fj , and EFj

is the energy profile of the function. The
energy EBLKj

consumed while the process is blocked can

be divided to energy ERD
BLKj

consumed while the process is

blocked on reading due to unavailable data and energy EWR
BLKj

consumed while the process is blocked on writing due to
unavailable space. EBLKj

can be expressed as:

EBLKj
= ERD

BLKj
+ EWR

BLKj
(7)

The energies ERD
BLKj

and EWR
BLKj

can be further expressed as:

ERD
BLKj

=
T total
BLKRDj

(T 1

BLKRDj
+ c · T 1j

c )
· (Erd

BLKj
+ c · E1j

c ) (8)

and

EWR
BLKj

=
T total
BLKWRj

T 1

BLKWRj

· Ewr
BLKj

(9)

where T total
BLKRDj

/T total
BLKWRj

is the time spent in blocking on

read/write by all the channels during the whole execution of
the process Pj , T 1

BLKRDj
/T 1

BLKWRj
is the time spent in

one blocking on read/write by a channel, and Erd
BLKj

/Ewr
BLKj

is the energy profile of one blocking on read/write by a
channel. During blocking on read, the process checks the write
counter of the corresponding FIFO channel by reading its value
through the communication component – see Fig. 2(a) line 3.
If contention may occur (c is 1), checking the write counter
on average will last longer with additional time T 1j

c , and the
energy consumed by the checking will increase on average
with E1j

c .

The above mentioned energy profiles E
rj
RDj

, E
wj

WRj
, EFj

,

Erd
BLKj

, Ewr
BLKj

and ECTRLj
associated with an application

process are obtained by first converting the corresponding part
of the process code to assembly equivalent, then counting the
number of times Ni each assembly instruction i is executed in
the corresponding assembly equivalent, and finally assigning
the energy cost Ei to each instruction in the processor ISA.
Therefore, each energy profile is the sum of the number of
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times Ni each instruction i is executed in the corresponding
assembly equivalent multiplied by the energy cost Ei of the
given instruction i on a selected platform type. Hence, each of
the above mentioned energy profiles can be represented as:∑

i

NiEi (10)

The contention dependent energy E
rj
c consumed by one

read from a channel through a non-contention-free communi-
cation component can be expressed as:

Erj
c =

T
rj
stall

T1stall

· Estall (11)

where T
rj
stall is the total estimated stall time during one read

access on channel rj through non-contention-free commu-
nication component, T1stall is the latency of one stall, the
ratio T

rj
stall/T1stall is the estimated number of stalls on the

communication component for one read access on channel rj ,
and Estall is the energy cost of one stall.

The contention dependent energy E1j
c consumed by one

checking of the write FIFO counter through a non-contention-
free communication component can be expressed as:

E1j
c =

T 1j
c

T1stall

· Estall =
T

1j
stall

T1stall

· Estall (12)

where T
1j
stall is the total estimated stall time through non-

contention-free communication component for one check for

data availability and the ratio T
1j
stall/T1stall is the estimated

number of stalls for one check for data availability.

B. Derivation of model parameters

From the model formulation in Section III-A we can
see that the energy model has three types of parameters –
N parameters such as Nrj , Nwj , NFj , Ni; T parameters
such as T total

BLKRDj
, T total

BLKWRj
, T 1

BLKRDj
, T 1

BLKWRj
, T

rj
stall,

T
1j
stall(T

1j
c ), T1stall; and E parameters such as Ei, Estall. This

section explains how the value of each of the parameters is
obtained. Parameters Nrj , Nwj and NFj are obtained by
counting integer points in input, output and process domain
polytopes of Pj , see Section II-A, which can be done automat-
ically by using the Barvinok library in the pn compiler [19]. It
is done only once per application and the obtained parameters
can be used for any mapping of that application to any MPSoC
platform. Parameter Ni is obtained by counting how many
times an instruction from the processor ISA is executed in the
corresponding assembly equivalent of the process code. This
is obtained by using ISS simulators or some hardware tracing
circuits and our profiler tool, see Section III-B2. It is done only
once per application for a selected processor type. Parameters
T total
BLKRDj

and T total
BLKWRj

are obtained from a cycle-accurate

SystemC timing simulation of PPNs [22]. This SystemC sim-
ulation should be performed for each application-to-platform
mapping because the blocking time, i.e. waiting for data/space,
depends on the specific mapping of the processes of an applica-
tion to the platform. Parameters T 1

BLKRDj
and T 1

BLKWRj
are

obtained by using ISS simulators or some hardware tracing
circuits. It is done only once for a selected processor type
and for a selected implementation of the read/write primitives.

Parameters T
rj
stall and T

1j
stall are obtained for each mapping, by

performing the analysis explained in Section III-B3. Parameter
T1stall is obtained from data-sheets or from measurements. The

energy cost Ei for each instruction i and energy cost Estall for
a stall are obtained from measurements – see Section III-B1,
and this is done only once per platform type (processor type,
communication infrastructure type, selected technology).

1) Extraction of the energy costs: In this section we will
describe how the energy costs Ei for each instruction i and
the energy cost Estall for a stall are derived.

Since our platforms consist of processing tiles and com-
munication infrastructure, the energy costs Ei and Estall can
be expressed as:

Ei = Eitile + Ecomm = (Pitile +
Pcomm

n
)li (13)

and

Estall = Estalltile+Ecomm = (Pstalltile+
Pcomm

n
)lstall (14)

where Eitile and Estalltile are tile-dependent energy costs and
Ecomm is a communication infrastructure-dependent energy
cost. The energy costs are obtained by multiplying the corre-
sponding power costs Pitile , Pstalltile , Pcomm with the instruc-
tion latency li, and the stall latency lstall. The power consump-
tion Pitile is the power consumed by an instruction i during
its execution on a processing tile. The power cost Pstalltile is
the power consumption of a tile when a stall occurs. Pcomm

is the power consumed by the communication infrastructure
when there is no communication over the infrastructure, while
n is the maximum number of tiles that the interconnect allows.
The power consumption of communication is captured within
Pitile power cost for load and store instructions. These power
costs are extracted from measurements.

There may be instructions with different latencies depend-
ing on cases they are used. An example is a conditional branch
instruction which can be taken or not taken with different
latencies for both cases. In this case, we consider an instruction
as a set of instructions with finite number of elements equal to
number of possible cases. We consider every instruction from
that set as an individual instruction and assign a power cost to
each of them.

For each instruction i we determine its power cost Pitile

by measuring the power consumption with minimum activity
and maximum activity of the instruction. The final power
cost is an average of the measured maximum and minimum
power consumption. In order to measure the maximum and
minimum power consumption, we create simple test codes
with the instruction under test in a loop and run them on the
tile. In the ”minimum activity” case an instruction performs
its action each time on the same operands, so there is no
switching activity on processor core buses. In the ”maximum
activity” case an instruction performs its action each time on
different operands such that switching activity on the buses
is maximized. The power cost of a stall Pstalltile is obtained
by measuring the power consumption of a system when stall
occurs. The power cost Pcomm is measured on a platform
with maximum number of tiles n, which the corresponding
interconnect allows, while there is no communication between
the tiles. These estimations of energy costs are performed only
once for the selected processor type and only once for the
selected communication infrastructure.

2) Extraction of the energy profiles: In order to create
the energy profiles E

rj
RDj

, E
wj

WRj
, EFj

, Erd
BLKj

, Ewr
BLKj

and

ECTRLj
associated with an application process Pj , we should
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first obtain the assembly instruction profiles of the correspond-
ing parts of the process code. The instruction profile of a code
consists of instruction counters which show how many times
each instruction from a processor ISA is executed in the cor-
responding code. In case of branch instructions we also need
the number of taken and the number of not-taken branches
for each branch instruction. We need the execution trace of an
application in order to obtain the needed instruction profiles.
Since the PPN application consists of processes repeated a
number of times, we do not need the instruction trace of the
whole execution of an application and we only need the traces
of each computation function, the read and write primitives
for each channel and the control structures. Each computation
function of an application is executed as many times as many
different execution traces can occur for that function. The
execution traces can be obtained by ISS simulators or by
some hardware tracing circuits. The execution traces usually
contain program counter values, instructions and can also
contain some additional information (e.g. branch is taken
or not, etc.). By analyzing program counter values we can
determine if a branch is taken or not. Our profiler tool reads the
execution traces of an application and creates the instruction
profiles of the application. The final instruction profile of the
computation function with many possible execution traces is
the average profile, where counters of each instructions are
averaged. Profiling of an application is done only once for
the selected processor type and selected implementation of
read/write primitives (HW or SW).

3) Analysis of communication contention: The derivation

of the energy model parameters T
rj
stall and T

1j
stall related to

non-contention-free communication components is explained
in this section. Since our procedure analyzes the contention
on remote tile-to-communication memory link, i.e. πj ← πi

link, we will use in the following the notation rij for a read
channel of a tile πj that reads from communication memory
of a tile πi.

The communication contention may occur if the com-
munication component within the MPSoC platform is an
arbitrated structure. In this work, we consider two types of
non-contention-free communication components – a crossbar
switch (CB) and a shared bus (ShB), where the CB and ShB
interconnections have a round-robin arbitration policy.

The procedure to derive T
rij
stall and T

1j
stall for CB commu-

nication component is given in Algorithm 1. Inputs of the
algorithm are the contention matrix R defined in Section II-C,
the number n of processing tiles in the platform, the size srij
of a data token transmitted through a channel rij and latencies
of the interconnect read and write arbiters aR, hR, rR, aW ,
hW , rW . During one read and write access through the CB
before the transferring of data the corresponding arbiters first
arbitrate the requests for access, with associated arbitration
latency aR and aW , and then ensure the communication link,
with associated handshaking latency hR and hW . Additional
latency rR and rW may occur on a master-slave link if there is
a re-arbitration, i.e. when the requested slave unit is different
from the last granted slave unit. The parameter srij is obtained
from the PPN model of an application, while arbiters’ latencies
aR, hR, rR, aW , hR, rW are obtained from measurements or
data-sheets. The contention on a CB component may occur
when at least two processes from at least two different tiles
perform read operation to the same communication memory
at the same time.

Algorithm 1 Procedure to derive T
rij
stall and T

1j
stall for the CB

Require: R, n, srij , aR, hR, rR, aW , hR, rW

1: for 1 ≤ i ≤ n do
2: ci = 0

3: for 1 ≤ j ≤ n do
4: ci = ci + Rij

5: end for
6: if ci > 1 then
7: ci = 1

8: else
9: ci = 0

10: end if
11: end for
12: for 1 ≤ j ≤ n do
13: qj = 0

14: for 1 ≤ i ≤ n do
15: qj = qj + Rij

16: end for
17: if qj > 1 then
18: qj = 1

19: else
20: qj = 0

21: end if
22: end for
23: for 1 ≤ j ≤ n do
24: l = 0

25: for 1 ≤ i ≤ n do
26: if Rij = 1 then

27: L1bc
rij

= hR

28: for rij such that πi → πj do

29: Lbc
rij

= (2 + srij )hR + qj ∗ 0.5rR + hW + qj ∗ 0.5rW

30: L
wc
rij

= L
bc
rij

+ ci ∗

n∑

k=1,k 6=j

Rik((2+ srij )(hR +aR)+ qk ∗

0.5rR + hW + aW + qk ∗ 0.5rW )

31: return T
rij

stall
= (Lbc

rij
+ Lwc

rij
)/2

32: L
1wc
rij

= L
1bc
rij

+ ci ∗

n∑

k=1,k 6=j

Rik(hR + aR)

33: L1

rij
= (L1bc

rij
+ L1wc

rij
)/2

34: l = l + 1

35: end for
36: end if
37: end for
38: return T

1j

stall
= (

∑

l

L
1

rij
)/l

39: end for

Algorithm 1 gives the procedure to derive T
rij
stall and

T
1j
stall for the CB and it consists of three parts: 1) for each

communication memory it is determined whether contention
may occur – lines 1 to 11; 2) for each processing tile it
is determined whether the re-arbitration may occur – lines
12 to 22 in the algorithm; and 3) the estimation of T

rij
stall

and T
1j
stall is performed at lines 23 to 39. Since the circular

round-robin arbitration pointer is statistically located in the
middle of the search space, we estimate T

rij
stall at line 31 in

Algorithm 1 as the average value of the best case stall time
Lbc
rij

, line 29, and the worst case stall time Lwc
rij

, line 30. The
best case stall time is when only one tile wants to read from a
communication memory (so there is no arbitration latency aR,
aW ). The worst case stall times are calculated by analyzing if
contention may happen, and if it may happen, then latencies
hR, hW , aR, aW , rR, rW for all the tiles that compete for the
same communication memory are summed up and added to
the best case stall time. Recall that our platforms with shared
communication infrastructures use SW read/write primitives –
see Section II-B. During one read SW primitive on a channel
rij , srij + 2 reads and one write are performed – see lines 1,
3, 6 and 8 in Fig. 2(a), where srij corresponds to size d in
Fig. 2(a). Here, re-arbitration may happen only on the first read
(out of srij + 2 reads) and on a write. The frequency of the
re-arbitration depends on both the application structure and
mapping. Here, if the re-arbitration may happen we assume
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Algorithm 2 Procedure to derive T
rij
stall and T

1j
stall for the ShB

Require: R, n, srij , a, h

1: n r = 0

2: for 1 ≤ j ≤ n do
3: y rj = 0

4: for 1 ≤ i ≤ n do
5: y rj = y rj + Rij

6: end for
7: if y rj = 0 then
8: n r = n r + 1

9: end if
10: end for
11: for 1 ≤ j ≤ n do
12: for 1 ≤ i ≤ n do
13: if Rij = 1 then
14: for rij such that πi → πj do

15: Lbc
rij

= (3 + srij )h

16: Lwc
rij

= Lbc
rij

+ (n − n r − 1)(3 + srij )(h + a)

17: return T
rij

stall
= (Lbc

rij
+ Lwc

rij
)/2

18: end for
19: end if
20: end for
21: end for
22: L1bc

= h
23: L1wc

= L1bc
+ (n − n r − 1)(h + a)

24: return T
1j

stall
= (L1bc

ij + L1wc
ij )/2

that the re-arbitration on a read access to the channel happens
every second time on the first read and every second time on
a write, i.e. we multiply rR and rW by 0.5 in lines 29 and
30 in Algorithm 1. In the case of data checking, there is no
possibility for re-arbitration because waiting for data represents
the reading of the write counter (second read within the SW
read primitive). Since from the SystemC timing simulation we
obtain information about the blocking time on a tile basis, for

estimation of T
1j
stall, at line 38, we sum up the average values

L1

rij
of each channel that a tile accesses for reading and divide

the result by the number of the accessed channels for reading
by that tile.

Let us now analyze the ShB case. The contention may
happen when at least two processes from at least two different
tiles perform read operation at the same time to any of the
communication memories in the platform. The procedure to

derive T
rij
stall and T

1j
stall for ShB is given in Algorithm 2. The

input parameters are similar to the CB case with a difference
that here we have only one arbiter. First we determine the
number of tiles n r that do not read from any communication
memory, lines 1 to 10 in Algorithm 2. Then in the following

lines, we estimate T
rij
stall and T

1j
stall, line 17, 24, as an average

of the best case stall time Lbc
rij

, L1bc, line 15, 22, and the

worst case stall time Lwc
rij

, L1wc, line 16, 23. In the best case,
only one tile wants to read from a communication memory.
By computing how many tiles (n − n r) read from any of
the communication memories, we determine how long the tile
may wait in the worst case.

IV. EVALUATION OF THE MODEL

We evaluate our energy model, proposed in Section III,
by showing its accuracy considering various application-to-
platform mappings. The obtained energy estimates are com-
pared to real energy measurements obtained from real im-
plementations of the considered systems, i.e., applications,
platforms and mappings. We show that the proposed energy
model is highly accurate for contention-free and different kinds
of non-contention-free communication components, different
applications and mappings, and different number of processing
tiles in a platform.

The proposed energy model is evaluated on MPSoC sys-
tems prototyped on the Virtex-6 FPGA board ML605. Since
the MicroBlaze [23] processor is the only available processor
type on Virtex-6, we use MPSoC platforms with different
number of MicroBlaze based tiles and with the AXI-4 [24]
interconnect as a non-contention-free communication compo-
nent, and a P2P interconnect as a contention-free communi-
cation component. We use the AXI interconnect configured
in CB and ShB modes with a round-robin arbitration policy.
The energy model is evaluated for two applications with
SW read/write primitives. The first application is the Sobel
edge-detection filter and the second application is the M-
JPEG video encoder. The PPN model for the Sobel consists
of 5 lightweight processes in terms of computation and 15
channels, thus the Sobel application is data communication-
dominant which introduces a lot of contention on the CB and
ShB. The M-JPEG PPN model consists of 6 processes and 5
channels with much higher computation/communication ratio,
and hence the M-JPEG is a computation-dominant application.
Since the maximum number of processes among these two
applications is 6, we perform energy estimates for platforms
with 2 to 6 processing tiles in a platform. The corresponding
power consumptions of application-to-platform mappings are
measured by using the ML605 on-board power monitoring
device and an additional MicroBlaze processor which reads
the corresponding power measurements from the monitoring
device. Instruction traces for the applications are obtained by
monitoring the Trace interface of a MicroBlaze processor. All
the platforms run at a frequency of 100 MHz.

Applying our model, described in Section III, we estimate
the energy consumption for each application-to-platform map-
ping, specified in the first column of Table I, for three types of
communication infrastructures – the CB, ShB and P2P. In the
first column, each mapping is denoted as app ntiles mmap,
where app is the application, ntiles is the number of tiles
in the platform, and mmap is the index of a mapping (as
an application can be mapped onto a platform in many
possible ways). The Em columns contain the reference values
of energy consumption of application-to-platform mappings,
obtained by real measurements. The Ee columns contain the
energy estimates of the same application-to-platform mappings
obtained by using our energy model. The err column for
each type of interconnect gives the energy estimation error
calculated as err = (Ee − Em)/Em · 100%. It can be seen
from Table I that our energy model is highly accurate for all
three types of interconnects, with an average energy estimation
error of 4.34% and a standard deviation of 3.35% among all
the interconnection types.

In order to analyze the influence of the communica-
tion contention on energy consumption of an application-to-
platform mapping, we perform the energy estimation for each
application-to-platform mapping with CB and ShB intercon-
nects without considering the contention in the energy model.
The results are given in Table II. By comparing Table I and
Table II we can see first that if the contention is not considered,
the energy of a mapping is always underestimated, and second
that the energy estimates are less accurate than the estimates
with considering the contention in the energy model. There-
fore, in the proposed energy model special attention is paid to
modeling the contention on communication infrastructures.

From the results shown in Table I it is clear that our
energy model is very accurate. Now we would like to discuss
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TABLE I. ACCURACY OF THE ENERGY MODEL FOR CB, SHB AND P2P
MPSOC PLATFORMS

app→ pla CB ShB P2P
Em Ee err Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%] [mWs] [mWs] [%]

Sobel 2 m1 59.9 61.66 +2.94 54.71 58.18 +6.34 53.95 52.34 -2.98

M-JPEG 2 m1 48.82 51.96 +6.43 49.56 51.99 +4.9 58.82 56.98 -3.13

Sobel 3 m1 82.12 73.32 -10.72 68.75 73.67 +7.16 74.43 73.51 -1.24

Sobel 3 m2 69.74 66.63 -4.46 60.98 62.13 +1.89 49.62 50.42 +1.61

M-JPEG 3 m1 44.1 42.73 -3.1 40.5 42.19 +4.17 43.64 44.39 +1.72

M-JPEG 3 m2 76.74 69.95 -8.85 68.84 67.58 -1.83 86.56 79.67 -7.96

Sobel 4 m1 58.32 58.7 +0.66 52.18 56.86 +8.97 68.07 68.06 -0.01

M-JPEG 4 m1 96.72 95.05 -1.73 93.8 93.69 -0.12 107.97 103.68 -3.97

Sobel 5 m1 71.5 71.03 -0.65 68.78 77.46 +12.62 79.52 85.87 +7.99

M-JPEG 5 m1 125.63 121.65 -3.17 127.75 119.31 -6.61 137.94 126.84 -8.05

M-JPEG 6 m1 77.4 77.15 -0.32 74.7 75.27 +0.76 84.42 79.32 -6.04

TABLE II. ACCURACY OF THE ENERGY ESTIMATION WHEN

CONTENTION IS NOT CONSIDERED IN THE MODEL

app → pla CB ShB
Em Ee err Em Ee err

[mWs] [mWs] [%] [mWs] [mWs] [%]

Sobel 2 m1 59.9 47.2 -21.2 54.71 46.76 -14.53

M-JPEG 2 m1 48.82 44.54 -8.77 49.56 45.5 -8.19

Sobel 3 m1 82.12 53.64 -34.68 68.75 55.05 -19.93

Sobel 3 m2 69.74 54.78 -21.45 60.98 53.04 -13.02

M-JPEG 3 m1 44.1 38.65 -12.36 40.5 38.23 -5.6

M-JPEG 3 m2 76.74 57.92 -24.53 68.84 54.82 -20.37

Sobel 4 m1 58.32 46.89 -19.6 52.18 45.56 -12.69

M-JPEG 4 m1 96.72 82.27 -14.94 93.8 81.17 -13.46

Sobel 5 m1 71.5 54.86 -23.27 68.78 58.15 -15.46

M-JPEG 5 m1 125.63 109.39 -12.93 127.75 106.79 -16.41

M-JPEG 6 m1 77.4 71.51 -7.62 74.7 68.24 -8.65

the efficiency of our model in terms of the time required
to estimate the energy consumption of a single application-
to-platform mapping. For every mapping, listed in the first
column of Table I, we measure the time needed for the energy
estimation. The energy estimation is conducted on a Lenovo
T520 laptop with Intel i7-2620M processor running at 2.7 GHz
and 4 GB of RAM. The average model evaluation time for a
mapping is 2.5 minutes, where a few milliseconds are needed
for evaluation of the formulas in Section III-A and derivation
of T

rij
stall and T

1j
stall parameters, and the rest of the time is spent

on getting T total
BLKRDj

and T total
BLKWRj

parameters. Deriving of

the other model parameters is not considered in this time
because they are derived only once at the beginning when the
model is calibrated and they are independent of mapping. The
efficiency of the proposed energy model is very good given its
high accuracy. Note that the majority of the evaluation time
(99%) is spent in SystemC cycle accurate simulation which
simulates 12000 cycles per second on average. We run cycle
accurate SystemC simulation for each mapping in order to
obtain very accurate T total

BLKRDj
and T total

BLKWRj
. We need as

accurate estimation of these blocking times as possible in order
to have accurate energy estimates because these blocking times
are significant part of the total execution time of an application,
and hence the energy consumed in blocking could be also
significant part of the total energy consumed by a mapping.

V. CONCLUSION

We proposed an accurate energy model for streaming
applications modeled using the PPN model and mapped onto
MPSoC platforms. Special attention in our model is paid
to the contention on non-contention-free communication in-
frastructures which is important to estimate accurately the
energy consumption of a mapping. Experimental results on
two applications with very different computation and com-
munication characteristics mapped onto MPSoC platforms
with different communication infrastructures showed that the
proposed modeling and estimation methodology is highly
accurate for different kinds of applications, different kinds
of communication infrastructures within MPSoC platforms

and various application-to-platform mappings. On average, the
energy estimation error is 4% with a standard deviation of 3%
in comparison to real energy measurements for all considered
communication infrastructures. The average model evaluation
time of 2.5 min per single design point for considered cases
is very good given the high accuracy of the proposed energy
model.
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