
EMBEDDED SYSTEMS DESIGN METHODOLOGY AT
 LEIDEN EMBEDDED RESEARCH CENTER

Ed F. Deprettere Todor Stefanov Bart Kienhuis
Leiden Embedded Research Center (LERC)

Leiden Institute of Advanced Computer Science - Leiden University
The Netherlands

e-mail: edd@liacs.nl

Abstract: The new emerging Embedded Systems are increasingly becoming more
heterogeneous, i.e., systems composed of fully programmable components (microprocessors),
re-configurable components (FPGAs), and dedicated hardware blocks. To design and program
these systems, we present in this paper a number of concepts including the Y-chart approach
and the Abstraction Pyramid. These concepts allow designers to perform system design and
design space exploration in a systematic and automated way, narrowing down the design space
in a number of steps. The concepts presented in this paper provide a methodology in which
embedded system platforms can be obtained that satisfy a set of constraints while establishing
enough flexibility to support a given set of applications.
Key words: Embedded Systems Design, Y-chart Approach, Abstraction Pyramid, Design
Space Exploration

1. INTRODUCTION

Many research groups in university and industrial laboratories are currently addressing the
problem of how to cope with the increasing complexity of embedded processing, and the cost of
specifying, designing, and manufacturing the processors that have to do the job. In the past,
embedded processing boiled down to control operations which were implemented in micro-
controllers. Micro-controllers are finite state machines (FSM) that model the behavior in terms of
states and state transitions. Over the time, the complexity of these controllers steadily grew and in
addition to that, the behavior changed from pure control to control plus processing: FSMs became
extended FSMs (EFSM). FSMs and EFSMs are control dominated, and are quite different from the
compute dominated Instruction Set Architectures (ISA), such as the MIPS, the (Strong) ARM, and
DSPs. Nevertheless, EFSMs and ISAs have in common that they can not deal with concurrency:
they have a strict sequential behavior. However, applications, whether control dominated or
compute dominated have concurrency potentials that must be exploited when applications grow
more complex and/or have hard execution time constraints. This has given birth to, among others,
co-design finite state machines (CFSM) and co-processor architectures and, more recently,
multiprocessor (homogeneous and heterogeneous) architectures.

Next generations embedded processing will be implemented in heterogeneous processing
systems that are compositions of processing units, some of which are programmable, some re-
configurable, and some dedicated, all being connected to a communication, synchronization and
storage infrastructure. We call them Embedded Systems.

In the remaining part of the paper we present an approach to overcome the problem of the
growing complexity and cost of future embedded systems design. The focus is on systems that can
execute several applications that belong to an application domain, in particular streaming date
applications: Array Signal Processing, Multimedia, Wireless Communications, and Molecular Cell
Biology.

We present here the embedded systems design approach that was devised and implemented in
the Leiden Embedded Research Center (LERC) in a number of steps, where each step appears in a
what, why, and how order. The results have not been obtained in isolation: It was partly in
cooperation with others among which were colleagues at Philips Research in Eindhoven, and partly
simultaneous with similar developments in the control dominated domain in particular at the
University of California at Berkeley [1].

2. THE Y-CHART APPROACH

The Y-chart approach [2] obeys a separation of concerns principle by making application
specifications, architecture specification, and mapping methods manifest to permit quantification of
choices. Moreover, the Y-chart approach is abstraction-level invariant. Thus the three entities –
application models, architecture model, and mapping methods – are strictly separated whatever level
of abstraction is considered: system-level, component-level, etc.

What. The Y-chart approach is visualized in Figure 1. An architecture template (a
parameterized architecture, that is) is specified in terms of some Model(s) of Architecture (MoA)
[3], and is accompanied by, typically, a set of (domain-specific) applications that are specified in
terms of some Model(s) of Computation [4].

Architecture
Instance Applications

Mapping

Performance
Analysis

Performance
Numbers

Rewrite
the application

Use different
mapping strategies

Suggest architectural
improvements

Figure 1. The Y-chart approach. Architecture, applications and mapping/performance analysis are strictly
separated.

Both specifications are assumed to match (parallel architectures require applications to be

specified using parallel languages, say) and are mapped onto each other (i.e., applications are
mapped onto an instance of the architecture template - an architecture, that is) by means of well
defined mapping methods. Performance and cost numbers are then obtained through analysis
(possibly by simulation) of the applications-architecture pair. These numbers are available to the
designer to revisit certain decisions through a feedback to any one of the three blocks in Figure 1.

Why. The rationale behind the Y-chart approach is the need to master complexity. To wit,
traditional (sequential) Instruction Set Architectures (ISA) are not scalable and, hence, can not catch
up with the exponentially growing density of transistors (Moore's law). This observation has led to a
radically new approach in the design of embedded systems. Firstly, architectures are evolving from
single ISAs, to ISA plus co-processor architectures, to multi-processor architectures, and beyond.
These architectures are parallel architectures by nature. Moreover, the traditional way of designing
such architectures is leading more and more to excessive non-recurrent engineering costs which can
not be recovered from expected product sales. This problem can be overcome by introducing the
notions of system-level design [5], platform-based design [6], and separation of concerns [7]. The
Y-chart approach addresses all of these new trends. It advocates a separation of applications,

architecture, and mapping concerns. It can also deal with platform-based design and, finally, it
supports system-level design. Indeed, the Y-chart approach introduced in [2] was part of an
Abstraction Pyramid view on emerging embedded systems design. At the top of the pyramid are the
user’s requirements and constraints. The bottom of the pyramid is the design space. This is
visualized in Figure 2.

Low

High

Medium

Stepwise refinement
Y-chart approach at

every level of abstraction

Figure 2. The Abstraction pyramid. The higher the level, the more objects there are, the faster the

search and performance analysis is, but the less accurate the numbers are.

The design space can be quite large and the user’s requirements can be very demanding. To
master this complexity problem, the suggestion arose that one should stick to an application-domain
instead of pursuing general purpose solutions. The implication of this restriction is that only certain
applications should be implemented in only certain architectures: domain specific applications and
domain-specific platforms. Roughly speaking, a platform consists of two parts: One that concerns
processing elements, and one that encompasses a communication, synchronization, and storage
infrastructure. This partitioning is compliant with the communication vs. computation separation of
concerns [7]. The processing elements are taken from a library – often as intellectual property (IP)
components – and the communication, synchronization, and storage infrastructure obeys certain
predefined construction and operation rules. Specifying a platform is to be done through a domain
analysis, and is currently still more of an art than a science. Versions of platforms are called
Architecture Templates (parameterized architectures, that is), and instances of an architecture
template are architectures. Thus the user’s requirements and constraints in a particular application
domain have to be brought to implementations in a platform-based design approach. The user’s
requirements and constraints are the highest level of abstraction and the ultimate platform–based
architecture is the lowest level of abstraction.

How. How can we bridge the possibly large distance between the top and the base of the
abstraction pyramid? Here is the answer: At each and every level of abstraction, a Y-chart approach
architecture exploration step narrows down the design space, whereafter a refinement takes place to
go from one level of abstraction to the next one down. This is also shown in Figure 2. Narrowing
down the design space implies decision making; refinement means introducing more detailed
information. For example, when it is decided that a particular processing element – a high-level
parameter, that is – must be of type ISA, the Y-chart approach requires that we provide models for
this ISA and for the part of the application that is to be mapped onto it as well as mapping and
performance analysis methods. This is not too difficult because this is the well known case shown in
Figure 3: a shared memory architecture, C language specification, and a standard compiler.

However, at higher levels of abstraction, these models and methods are not adequate. Indeed,
recall that top-level domain-specific platforms define a set of parallel architectures, and that the Y-
chart approach requires that architecture specifications and application specifications must match,

for i = 1 : 1 : 10,
 for j = 1 : 1 : 10,
 A[i , j] = FIR();
 end
end
for i = 1 : 1 : 10,
 for j = 1 : 1 : 10,
 A[i , j] = SRC(A[i , j]);
 end
end

Standard Compiler

Memory

ALU
Program
Counter

Instruction
Decoder

Bus

Microprocessor Application

Simulator

Performance
Numbers

Model of Architecture:
- Sequential (Program Counter)
- One item over the bus at the
time
- Global shared memory

Model of Computation:
- Sequential Program
- Shared memory

Figure 3. Traditional specification and implementation models.

implying that application specifications must be expressed in terms of parallel programs. There are
at least three ways to provide such specifications. The first one is to use parallel languages. The
second one is to rely on so-called Models of Computation (MoC) [4]. The third one is to translate
imperative language specifications to parallel specifications. However, the compelling practice tells
us that application developers invariantly use imperative languages to specify applications and that
the most powerful specifications are those that are expressed in terms of MoCs. Moreover, parallel
architectures can also be conveniently specified in terms of MoCs, which is an appealing way to
obey the matching rule. Roughly speaking, models of computation are operational models that differ
in the way communication and synchronization primitives and protocols are defined. Because all
this is domain-specific, we propose to continue our discussion by taking up the particular
application-domain and platform that the Leiden Embedded Research Center (LERC) has been
working out so far. Thus we turn to the streaming data application domain (in particular the static,
affine nested-loop programs [8])1 and the relatively simple platform consisting of a single re-
configurable processor, possibly embedded with soft programmable core.

3. THE LERC COMPAAN AND LAURA (COLA) TOOL CHAIN

What. The LERC Compaan and Laura tool sets are visualized in Figure 4. They constitute a
design flow process that takes off at the top with (typically) a set of domain-specific application
specifications written in an imperative language like Matlab, C/C++, or Java. Automated code-to-
code transformations can be applied to these specifications by invoking the Algorithmic

1 Static, affine nested-loop programs are sequential nested-loop programs in which all loop boundaries and conditions
are affine functions of the loop iterators and parameters. See further down for an example.

Transformations tool. Original or code-transformed specifications are then automatically translated
to functionally equivalent Kahn Process Network (KPN) [9] specifications2 by invoking a set of
models, methods, and tools encapsulated in the Parallel Compiler.

Intermediate Matlab or C code

Algorithmic Transformations

Parallel Compiler

Transformed Process Networks

Architecture Independent Transformations

Architecture Dependent Transformations

Set of Process NetworksArchitecture Tempalte

Applications described in C or Matlab

Set of Implementations

Architecture Simulator Performance
Numbers

COMPAAN

LAURA

Application Transformation
Layer

Mapping Layer

Figure 4. The COMPAAN and LAURA Design Flow Process.

The Algorithmic Transformations tool and the Parallel Compiler tool set constitute together the
Applications Layer (upper gray box) which is the Compaan part of the flow. KPN specifications
generated by Compaan together with a specification of a target architecture template are then taken
to the Mapping Layer – the gray box below the Applications Layer. The mapping layer provides a
number of models, methods, and tools to transform KPN specifications (or representations of these
[3]) to architecture specifications (or representations of these [3]), partly in an Architecture
Independent Transformations number of steps, and partly in an Architecture Dependent
Transformations number of steps. By applying these transformations in a stepwise fashion the KPN
specifications are refined into implementations. Transformation tools in the mapping layer form the
Laura part of the flow. The architecture simulator at the bottom of Figure 4 can be used to evaluate
the performance and cost of implementations generated through the mapping layer. The
performance and cost numbers delivered by the simulator are available to the designer to revisit
certain decisions through a feedback to the application layer and/or the mapping layer, as shown in

2 The KPN is one of various MoCs. It has several appealing properties. It is defined as a set of autonomous processes
that communicate point-to-point over unbounded FIFO channels and synchronize through simple blocking reads. There
is neither a global memory nor a global scheduler. It is quite impartial to implementations. Moreover, it is deterministic,
meaning that for given source data, the results are independent of the chosen operational schedule.

Figures 1 and Figure 4 by the feedback arrows to these layers. In the present Compaan/Laura design
system, the platform is a single re-configurable processor with possibly an embedded soft core.

Why. The LERC Compaan and Laura tool sets have been developed to evaluate the system-
level and platform-based design methodology advocated by the Y-chart approach for the streaming
applications, which include Multimedia, Array Signal Processing, and Molecular Biology. The
Compaan/Laur design tool sets constitute also one of the few system-level and platform-based
approaches in the large Matlab-to-FPGA research community. See e.g., [10,11]. To ensure provable
success, some restrictions have been built in so far. One restriction is that the feasible applications
must have static, affine nested-loop specifications (see footnote 2). An illustrative example is the
following program:

for k = 1 : 1 : K,
 for j = 1 : 1 : N,
 [r(j,j)] = F(r(j,j) , x(k,j));
 for i = j+1 : 1 : N,
 [r(j,i)] = G(r(j,i) , x(k,i));
 end
 end
end

The Compaan and Laura tool sets can be used to refine (parallelize) a process in a KPN

application specification and to calibrate the mapping of this refinement into system architecture
component. This calibration provides system level parameter values for system-level exploration.
The functions F() and G() are not specified at this level of abstraction. They are assumed to be
defined as IP cores at the level of implementation. Loop bounds and conditional constructs are
affine functions of the loop iterators and/or parameters. Another restriction is that the platform is a
simple re-configurable processor, possibly with embedded soft programmable core. The class of
applications that satisfy the static, affine nested-loop specification restriction is still quite large.
Also, the condition that the platform must be a single re-configurable processor is not severe,
because such processors are predicted to become dominant in on-chip networked multi-processor
architectures: Exploring the re-configurable components in such architectures is as important as
exploring the complete architectures themselves, and will most likely be part of it as shown in
Figure 5.

How. The Compaan translator takes in sequential programs written in Matlab, C/C++, or Java.
An aggressive array analysis tool converts this program (or a code-to-code transformed version of it)
to a so-called single-assignment program. A single-assignment program is a program in which the
variables are assigned only once with a value. For example, the program given in Figure 6-a) is
converted to the single assignment program shown in Figure 6-b).

The single-assignment program is then translated to a behavior equivalent KPN. The KPN that
goes with the single-assignment program in Figure 6-b) is depicted in Figure 7. It consists of three
source nodes (Nx, Ny, Nh), a computation node NF, and a sink node Ny'. The code-to-code
transformation tool can be used to transform the given program in such a way that the resulting
KPN contains more nodes (more parallelism, that is) or fewer nodes (less parallelism, that is).

Application Domain

Platform
Specification

Application
Specification

COMPAAN

Architecture
Instance

Process Network
Instances

High-level Mapping

Co-simulation
Performance Analysis

Performance/cost
Numbers

Imperative Specification

Translator

PN Alternatives

LAURA

FPGA platform

COMPAAN

Component-level
(COMPAAN/LAURA Calibration)

System-level
(Exploration)

IP components
Communication, Synchronization and

Storage infrastructure

FPGA component:
- latency, throughput
- area
- power dissipation
- etc.

Figure 5. Using the Compaan and Laura tool sets in a system-level architecture exploration for calibrating

the component models of the architecture.

for n = 1 : 1 : N,
 for k = 1 : 1 : K,
 y(n) = y(n) + h(k) * x(n-k);
 end
end

for n = 1 : 1 : N,
 for k = 1 : 1 : K,
 y(n,k+1) = F(y(n,k) , h(n,k) , x(n,k));
 h(n+1,k) = h(n,k);
 x(n+1,k+1) = x(n,k);
 end
end

a) b)
Figure 6. A simple example program (a), and its single assignment version (b).

Nx

Ny

Nh

NF Ny'
FIFO channel

FIFO channel

FIFO channel

FIFO channel

Figure 7. A Kahn Process Network corresponding to the program shown in Figure 6-b).

Now, the Laura tool set has to take the KPN to the re-configurable platform for

implementation. Because this has to be automated, the processes (nodes) in the KPN must be further
structured. Thus in Compaan/Laura, processes themselves are modeled in terms of the Stream-
based Function (SBF) [12] model of computation. The SBF model is visualized in Figure 8.

Private Memory

f1

f2

f3

Controller

FIFO

FIFO

FIFO

FIFO

FIFO

OUT-ChannelsIN-Channels

Figure 8. The Stream-based Function model of a KPN Process.

It consists of a private memory, a function repertoire, a controller, and a set of channel selectors.

The function repertoire can be either a single function f() that takes its arguments from a varying set
of channels, or a set of functions that can be invoked sequentially. The private memory stores data
that is read from the FIFO channel and is not to be consumed at the time of reading. Whether such a
private memory and accompanying control is needed is a compile time task [13]. The private
memory, the function repertoire and the channel selection components are pre-designed and
available in a library. FIFO channels are likewise pre-defined and available in the library. Thus the
process networks – including the process SBF models – provided by Compaan can be easily
mapped onto re-configurable platforms using the Laura tools that convert the Compaan models into
implementations by invoking the library components. The Laura library does not contain
implementations of the functions in the function repertoire. These are details that reside on an
abstraction level that is below the Compaan and Laura levels. Typically, detailed implementations
of functions are borrowed from partners dealing with IP cores. These cores are imported by Laura
and integrated in the SBF model.

4. CONCLUSIONS

In this paper, we presented the methodology, devised at the Leiden Embedded Research Center
(LERC), for designing the new emerging embedded systems. The presented methodology addresses
the problem of mastering the complexity of designing such systems by employing the system-level
design, platform-based design, and separation of concerns concepts.

The LERC methodology is supported by the Compaan and Laura tool sets that have been
developed and implemented at LERC as well. Currently, these tool sets are application and platform
domain-specific, i.e., streaming data applications (in particular static, affine nested-loop programs) and a
relatively simple platform consisting of a single re-configurable processor, possibly embedded with soft
programmable core. As a future work we plan to extend the application and platform domains of Compaan
and Laura in order to support dynamics in streaming data applications as well as to support networked on-
chip multiprocessor platforms.

REFERENCES
1. F. Balarin et al, Hardware-Software Co-design of Embedded Systems – The POLIS Approach.

Kluwer Academic Publishers, 1997.
2. Bart Kienhuis, Ed Deprettere, Pieter van der Wolf, and Kees Vissers, “A Methodology to Design

Programmable Embedded Systems: The Y-Chart Approach,” in Embedded Processor Design
Challenges, LNCS 2268 (Ed F. Deprettere, Jurgen Teich, and Stamatis Vassiliadis, eds.), pp. 18–37,
Berlin: Springer, 2002.

3. Vladimir Zivkovic, Ed Deprettere, and Pieter van derWolf, “Design Space Exploration of Streaming
Multiprocessor Architectures,” in Proc. IEEE Int. Workshop on Signal Processing Systems
(SiPS’02), (San Diego, CA, USA), pp. 228–234, October 2002.

4. Stephan Edwards, Luciano Lavagno, Edward Lee, and Alberto Sangiovanni-Vincentelli, “Design of
Embedded Systems: Formal Models, Validation, and Synthesis,” Proceedings of the IEEE, vol. 85,
pp. 366–390, March 1997.

5. Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and Shuqing Zhao, SpecC:
Specification Language and Methodology. Kluwer Academic Publishers, 2000.

6. Alberto Sangiovanni-Vincentelli and Grant Martin, “A Vision for Embedded Systems: Platform-
Based Design and Software Methodology,” IEEE Design and Test of Computers, vol. 18, no. 6, pp.
23–33, 2001.

7. Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-Vincentelli,
“System-Level Design: Orthogonalization of Concerns and Platform-Based Design,” IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523–1543, 2000.

8. Edwin Rijpkema, Modeling Task Level Parallelism in Piece-wise Regular Programs. PhD thesis,
Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science, Leiden
University, 2002.

9. Gilles Kahn, “The Semantics of a Simple Language for Parallel Programming,” in Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

10. Malay Haldar, Anshuman Nayak, Alok Choudhary, and Prith Banerjee, “A System for Synthesizing
Optimized FPGA Hardware from Matlab,” in Proc. IEEE/ACM Int. Conf. on Computer Aided
Design (ICCAD’01), (San Jose, CA, USA), pp. 314–319, November 2001.

11. Jan Frigo, Maya Goghale, and Dominique Lavenier, “Evaluation of the Stream-C C-to-FPGA
Compiler: An Applications Perspective,” in Proc. Int. FPGA Conference (FPGA-2001), (Monterey,
CA, USA), February 2001.

12. l Bart Kienhuis and Ed Deprettere, “Modeling Stream-Based Applications using the SBF Model of
Computation,” Journal of VLSI Signal Processing Systems for Signal, Image and Video Technlogy,
vol. 34, no. 3, pp. 291–300, 2003.

13. Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere, “A Compile-time based Approach for
Solving Out-of-Order Communication in Kahn Process Networks,” in Proc. IEEE International
Conference on Application-specific Systems, Architectures, and Processors (ASAP’2002), (San
Jose, USA), July 17-19 2002.

