
1

Fault-Tolerant Nanosatellite Computing on a Budget
Christian M. Fuchs, Member, IEEE, Nadia M. Murillo, Aske Plaat, Erik van der Kouwe, Daniel Harsono,

and Todor P. Stefanov, Member, IEEE

Abstract—We present an on-board computer architecture designed
for small satellites (<50kg), which exploits software-fault-tolerance to
achieve strong fault coverage with commodity hardware. Micro- and
nanosatellites have become popular platforms for a variety of commercial
and scientific applications, but today are considered suitable mainly for
short and low-priority space missions due to their low reliability. In
part, this can be attributed to their reliance upon cheap, low-feature
size, COTS components originally designed for embedded and mobile-
market applications, for which traditional hardware-voting concepts are
ineffective. Software-fault-tolerance has been shown to be effective for
such systems, but have largely been ignored by the space industry
due to low maturity, as most have only been researched in theory. In
practice, designers of payload instruments and miniaturized satellites
are usually forced to sacrifice reliability in favor of delivering the
level of performance necessary for cutting-edge science and innovative
commercial applications. Thus, we developed a set of software measures
facilitating fault tolerance based upon thread-level coarse-grain lockstep,
which we validated through fault-injection. To offer strong long-term
fault coverage, our architecture is implemented as tiled MPSoC on
an FPGA, utilizing partial reconfiguration, as well as mixed criticality.
This architecture can satisfy the high performance requirements of
current and future scientific and commercial space missions at very low
cost, while offering the strong fault-coverage guarantees necessary for
platform control even for missions with a long duration. This architecture
was developed for a 4-year ESA project. Together with two industrial
partners, we are developing a prototype to then undergo radiation testing.

Index Terms—CubeSat, SmallSat, Nanosatellite, Satellite, System-on-
chip, RTOS, FPGA, ARM, Cortex-A53, Microblaze, Xilinx, COTS,
partial reconfiguration, forward error correction, fault tolerant systems,
fault tolerance, integrated circuit reliability, fault injection, reliability,
robustness, software defined fault tolerance

I. INTRODUCTION

Satellite miniaturization has enabled a broad variety of scientific
and commercial space missions, which previously were technically
infeasible, impractical or simply uneconomical. However, due to their
low reliability, nanosatellites, as well as light microsatellites, are typ-
ically not considered suitable for critical and complex multi-phased
missions and high-priority science. The on-board computer (OBC)
and related electronics constitute a large part of such spacecraft,
and were shown to be responsible for a significant share of post-
deployment failure [1]. Indeed, these components often lack even
basic fault tolerance (FT) capabilities.

Due to budget, energy, mass, and volume restrictions, existing
FT solutions originally developed for larger spacecraft can not be
adopted. In this paper we describe an multiprocessor System-on-
Chip (MPSoC) that utilizes conventional hardware, providing FT
for miniaturized satellites. The MPSoC is assembled from well

C.M. Fuchs was with the Leiden Institute of Advanced Computer Science
and Leiden Observatory at Leiden University, 2333 CA, The Netherlands,
e-mail: christian.fuchs@dependable.space

A. Plaat, E.v.d. Kouwe, and T.P. Stefanov were with the Leiden Institute
of Advanced Computer Science

N.M. Murillo and D. Harsono were with Leiden Observatory
This approach was developed for a 4-year European Space Agency (ESA)

NPI project supported by two industrial partners. N.M. Murillo and D.
Harsono acknowledge funding through the European Union A-ERC grant
291141 CHEMPLAN, by the Netherlands Research School for Astronomy
(NOVA), and the Royal Netherlands Academy of Arts and Sciences Professor
Prize.

Manuscript submitted at RADECS2018 on April 17th, 2018, and revised,
reworked and extended on September 16th.

tested COTS components, library logic (IP), and powerful embedded
and mobile-market processor cores, yielding a non-proprietary, open
architecture. Our key contribution is a fault tolerant OBC architecture
for CubeSat use that consists only of extensively validated standard
parts, and can be reproduced with minimal manpower and financial
resources.

II. BACKGROUND & RELATED WORK

Aboard nanosatellites, subsystems are controlled by just one com-
mand & data handling system, whereas aboard a larger satellite these
tasks are distributed across multiple dedicated payload and subsystem
computers. This implies a varying OBC workload throughout a
nanosatellites mission, which traditional FT solutions only handle
through over-provisioning. The tiled MPSoC design presented in
this paper can efficiently handle faults through thread migration and
partial reconfiguration. Major parts of our approach are implemented
in software, allowing the OBC to deliver the desired combination of
performance, robustness, functionality, or to meet a specific power
budget. To enable strong FT with low-cost commodity hardware,
we combine fault detection, isolation and recovery in software,
FPGA configuration scrubbing with other fault detection, isolation
and recovery (FDIR) measures across the embedded stack.

Nanosatellites today utilize almost exclusively COTS microcon-
trollers and application processors-SoCs, FPGAs, and combinations
thereof [2], [3]. Due to manufacturing in fine technology nodes,
and the use of extensively optimized standard IP, they offer superior
efficiency and performance as compared to space-grade OBC designs.
The energy threshold above which highly charged particles can induce
faults (SEE – single event effects) in such components decreases,
while the ratio of events inducing multi-bit upsets (MBU), and the
likelihood of permanent faults, increase. To adapt such hardware-FT
based concepts additional FT-circuitry is required, inflating logic size
and producing diminishing returns, resulting in limited scalability and
low clock frequencies [4]–[6]. We can observe that traditional FT-
concepts applied to modern COTS hardware yield no nanosatellite
compatible architectures.

While more sensitive to transient faults than ASICs [7], [8], FPGA-
based Soft-SoCs have been shown to offer excellent FDIR potential
for miniaturized satellites [9]. Transients in critical parts of the FPGA
fabric can be scrubbed [10], while permanent faults may be compen-
sated through reconfiguration with differently routed configuration
variants [11]. Fine-grained, non-invasive fault detection in FPGA
fabric, however, is challenging, and subject of ongoing research [12],
[13]. Relevant FT-concepts thus rely on error scrubbing, which has
scalability limitations and cover only parts of the fabric [10], [12].
We overcome these limitations by implementing fault-detection in
software through thread-replication and coarse-grain lockstep within
an MPSoC using weakly coupled cores.

Tiled architectures [14], [15] are often used for well paralellizable
applications with many low-performance processor cores. Among
others, [16] and [15] showed that such typologies can also be
exploited to achieve FT for image processing applications with
a very specific structure. We combine a tiled architecture with
coarse-grained lockstep [17], enabling FDIR without constraining
the application type or system architecture. Thus, the architecture
presented in this paper is well suited for platform control and can be
used as a template, allowing a high level of OBC design freedom,

2

and enabling a considerable amount of testing to be inherited from
COTS components and logic.

Thread migration has been shown to be a powerful tool for
assuring FT, but prior research ignores fault detection, and imposed
tight constraints on an application’s type and structure (e.g., video
streaming and image processing [18]). Thread-level coarse-grain
lockstep of weakly coupled cores instead supports general purpose
computing, and in the past, has already been used for high availability,
non-stop service, and error resilience concepts. However, in prior
research, faults are usually assumed to be isolated, side effect free,
and local to an individual application thread [19] or transient [20],
[21], entailing high performance [22] or resource overhead [23],
[24]. More advanced proof-of-concepts [20], [25], however, attempt
to address these limitations, and even show a modest performance
overhead between 3% and 25%, but utilize checkpoint & rollback or
restart mechanics [20], which make them unsuitable for spacecraft
command & control applications.

Many of these limitations and obstacles ultimately can be attributed
to low maturity, as a majority of software-FT concepts are published
as a concept TRL1 but remain unvalidated. Hence, they could be
uncovered, and in many cases, can be potentially resolved through
implementation and practical validation [25], increasing maturity
to TRL2 or TRL3. However, development of a testable proof-of-
concept is a time consuming and costly undertaking [26], as outlined
among others by Sangchoolie et al. [27] with limited immediate
yield for academic publication. Fault injection for entire OS instances
is especially non-trivial [28], as thorough preparation and careful
tool-selection is necessary to obtain representative results from a
fault injection experiment [29]. Therefore, a broad variety of TRL1
software-FT concepts exist today at a theoretical level [30]–[32],
for which validation was only conducted statistically using modeling
with different fault distributions or not a all. In this contribution, we
therefore conduct validation of our coarse-grain lockstep approach
using systematic fault-injection. Thereby we verify the effectiveness
of our coarse-grain lockstep FDIR mechanics under stress using a
RTOS-based proof-of-concept implementation, increasing maturity to
TRL3.

III. A HYBRID FAULT-TOLERANCE APPROACH

Conventional FT architectures require proprietary logic in hardware
to facilitate fault detection and coverage. In contrast, the architec-
ture described in this paper can offer strong FT using just COTS
components and proven standard library logic. This is made possible
through the use of the FT approach we presented in [17]. The high-
level functionality of this approach is depicted in Fig. 1, and consists
of three interlinked fault mitigation stages implemented across the
embedded stack:

Stage 1 implements forward error correction and utilizes coarse-
grain lockstep of weakly coupled cores to generate a distributed
majority decision across tiles. Fault detection is facilitated through
application callback functions, without requiring deep modifications
to an application or knowledge about intrinsics.

Stage 2 recovers failed tiles through reconfiguration and self-
testing. It assures the integrity of programmed logic and deploys con-
figuration scrubbing, as well as Xilinx Soft-Error-Mitigation (SEM),
to correct transients in FPGA fabric. Its objective is to assure and
recover the integrity of processor cores and their immediate peripheral
IP through FPGA reconfiguration and the use of differently routed
and placed alternative configuration variants, thereby counteracting
resource exhaustion.

Stage 3 engages when too few healthy tiles are available, and
re-allocates processing time to maintain reliability. To do so, thread-
level mixed criticality is exploited, assuring sufficient compute re-

sources are available to high-criticality applications by sacrificing
performance or availability of lower-criticality threads.

Further details including benchmark results are available in [17].
The main target in our project is the ARM Cortex-A53 application
processor, which is today widely used in embedded and mobile-
market devices. However, this research is processor and ISA indepen-
dent. In this paper, we describe an MPSoC design and architecture
template, which is enabled by this approach and can be reproduced
in Xilinx Vivado 2017.1 and later.

Stage 1: Short-Term Fault Mitigation

The objective of Stage 1 is to detect and correct faults within a
tile, and assure a consistent system state through checkpoint-based
FEC. It is implemented as sets of tiles running two or more copies
of application threads (siblings) in lock step. Checkpoints interrupt
execution, facilitating the lockstep and enforcing synchronization,
allowing thread assignment within the system to be adjusted if
required.

This approach enables us to utilize application intrinsic code and
data to assess the health state of the system without requiring in-depth
knowledge about the application itself. The supervisor reads out the
results of the tiles’ decentralized consistency decision. Application
threads can be scheduled and executed in an arbitrary order between
two checkpoints, as long as their state is equivalent upon the next
checkpoint.

We avoid thread synchronization issues as encountered by Kret-
zschmar et al. in [25] by merely reusing existing OS functionality
without breaking or ABI/API guarantees. Therefore, we can con-
tinue relying upon pre-existing synchronization mechanics such as
POSIX cancellation points1 and their bare-metal equivalents (e.g.,
RTEMS_NO_PREEMPT in RTEMS’s Classic API if used instead of
newlib or the POSIX API).

Stage 1 can deliver real-time guarantees if required, and the tight-
ness of the RT guarantees depends upon the time required to execute
application callbacks. In our RTEMS/POSIX-based implementation,

1For example, sleep, yield, pause; for further details, see IEEE Std 1003.1-
2017 p517

Tile Supervisor

Bootup

State
Update

Checkpoint

Application
Execution

Read Majority
Decision

Check Tile
Fault Counter

Keep
Tile

Stage 3
Mixed Criticality

Replace
Tile

Stage 2
Reconfiguration

 < limit > limit

Fig. 1: Stage 1 (white) assures fault detection (bold) and fault
coverage. Stages 2 (blue) and 3 (yellow) counter resource exhaustion
and adapt the on-board computer application schedule to reduced
system resources.

3

we utilize priority-based, preemptive scheduling with timeslicing,
allowing threads to delay checkpoints until they reach a viable state
for checksum comparison.

An application should provide four callback routines to the OS,
which are executed during tile boot by the OS or as part of a
checkpoint routine:

• an initialization routine, to be executed on all tiles at bootup;
• a checksum callback, used to generate a checksum for comparison

with siblings,
• a expose state callback, exposing all thread-state relevant data to

synchronize a sibling with a lockstep group; This data can either
be placed directly in the tile’s local memory, or as a reference to
structures in main memory.

• an update callback, which is executed on a tile that needs to
synchronize its state to a lockstep group.

Besides the addition of these callbacks, no alterations to an
application’s logic are necessary, except a viable way to assure it
can be interrupted by a callback routine periodically. The required
development effort for implementing these features in general is
comparably low, but depends on the structure of an application. For
the astronomical instrumentation applications utilized in our proof-
of-concept, these routines could be implemented with 10-20 lines of
C-code each. For example, the checksum callback consists almost
exclusively of CRC library calls for generating a checksum from a
set of state relevant variables and data structures in heap and stack.

Callbacks may be omitted due to practical reasons. For applications
which require little code and time for initialization, the initialization
routine can be omitted. Applications which are not executed con-
tinuously could return a pre-generated checksum to the OS, instead
of providing checksum, synchronization and callback handlers, for
example, by providing the OS with a signature or checksum before
program termination. Applications without a persistent state, or in
which the state is continuously re-generated based on input data, no
update callback would be necessary.

Checkpoints were designed to be time triggered on each tile
independently, but can also be induced by the supervisor through an

Try Alternative
Partition Variants
Try Alternative

Partition Variants

Lockstep & Software
Fault Detected

Tile Partial
Reconfiguration

Test & Boot
Partition

Successful
Recovery

Full FPGA
Reconfiguration

Stage 3
Mixed Criticality

Scrubbing &
Xilinx UltraSEM

Success

Failure

Try Alternative
Partition Variants

Failure

All tried

Fig. 2: The objective of Stage 2 is to recover defective tiles and
other logic through partial and full FPGA reconfiguration via ICAP. If
this is unsuccessful as well and no further spare processing capacity
is available to handle future faults, Stage 3 is activated to find a
more resource conserving application schedule, replenishing the spare
resource pool.

interrupt, for example, to signal that new threads have been assigned
(see also Section VI for additional information on time-vs-interrupt
driven checkpoint triggering). Thus, the OS only has to support
interrupts, timers, and a multi-threading-capable scheduler. To the
best of our knowledge, such functionality is available in all widely
used RT- and general purpose OS implementations.

Stage 2: Tile Repair & Recovery

Stage 1 can not reclaim defective tiles, eventually resulting in
resource exhaustion. Therefore, in this stage, we recover defective
tiles through reconfiguration to counter transients in FPGA fab-
ric. To do so, the supervisor will first attempt to recover a tile
using partial reconfiguration. Afterwards, the supervisor validates
the relevant partitions to detect permanent damage to the FPGA
(well described in, e.g., [33]), and executes self-test functionality
on the tile to detect faults in the tile’s main memory segment and
peripherals. If unsuccessful, the supervisor will repeat this procedure
with differently routed configuration variants, potentially avoiding or
repurposing permanently defective logic.

The supervisor can also attempt full reconfiguration implying a full
reboot of all tiles. Further details on reconfiguration and error scrub-
bing with a microcontroller-based proof-of-concept implementation
for a nanosatellite are available in [34]. If both partial- and full-
reconfiguration are unsuccessful and all spare resources have been
exhausted, Stage 3 is utilized to assure a stable system core to enable
operator intervention.

Stage 3: Applied Mixed Criticality

Stage 3 maintains system stability of an aged or degraded OBC, if
the remaining healthy tiles of the MPSoC no longer have sufficient
processing capacity available for all applications. When considering a
miniaturized satellite’s OBC, we can differentiate individual applica-
tions and parts of the flight software by criticality. At the very least,
we will find software essential to a satellite’s operation, for example,
platform control and commandeering, as well as other applications
of various levels of lower criticality. If the previous stages no longer
have enough spare processing capacity or tiles to compensate a fault,
this stage utilizes thread-level mixed criticality to assure stability of
core OBC functions. To do so, it can sacrifice lower criticality tasks in
favor of providing compute resources to reach the desired replication
level for critical threads.

Fig. 3: Our architecture allows the system properties of fault-
tolerance, performance, and energy consumption of an OBC to be
adjusted at runtime. The spacecraft operator can prioritize one of
these objectives, e.g. to achieve minimum energy consumption over
computational performance, while maintaining a given level of fault
tolerance.

4

Dependability for higher-criticality threads can be maintained
efficiently by reducing compute performance or reliability of lower-
criticality applications. Lower-criticality tasks may be executed less
frequently or on fewer tiles, thereby reducing functionality or fault
coverage for these tasks, retaining resources for higher-criticality
threads. This decision is taken autonomously, and the operator can
then define a more resource conserving satellite operation schedule at
the spacecraft level (e.g., sacrifice link capacity, or on-board storage
space) to make the best use of the OBC in its degraded state.

In practice a satellite operator can use this functionality also to
dynamically adjust the performance of the MPSoC mid mission. This
is achieved by adapting the distribution of applications across tiles,
the level of replication of application threads, and the processing time
allocated to individual application threads. The three properties, thus,
are in competition to eachother, as depicted in Figure 3. This capa-
bility is analogous to the powersaving capabilities present in today’s
mobile devices and consumer desktop computers, where performance
and energy consumption objective compete. An optimal combination
of these objectives exists only in theory, but in practice would be very
costly to obtain. For practical use, a set of “good enough but non-
optimal” can be achieved as at runtime autonomously using heuristics.
Further information on Stage 3 including dynamic thread-mapping, as
well as performance, energy and robustness optimization at run-time
is available in [35].

IV. THE MPSOC ARCHITECTURE

We developed our software-FT architecture for use on top of an
MPSoC consisting only of COTS technology. The main target in our
project is the ARM Cortex-A53 application processor. For many size-
optimized space applications, smaller cores such as the Cortex-A32,
A35 and A5 may also offer a better balance between performance,
universal platform support, and logic utilization. The Cortex-A53
core was chosen as it is today widely used in a variety of industrial
and mobile-market devices, though our architecture is processor and
instruction set architecture (ISA) independent.

In this section, we describe a publicly reproducible MPSoC design
variant implementing our architecture, which can be designed in full
using Xilinx library IP and Microblaze processor cores. The archi-
tecture minimizes shared logic, compartmentalizes tiles, and offers a
clearly defined access channel between tiles and the supervisor, and
is depicted in Figure 4.

A. Supervision & Reconfiguration

Stage 1 can be implemented on a single chip, but we utilize an off-
chip supervisor to facilitate FPGA reconfiguration and transient fault
scrubbing in the running configuration. The outlined multi-stage FT
approach puts only minimal load on the supervisor, and it can thus be
again implemented using a traditional radiation hardened or tolerant
microcontroller. The FeRAM-based TI-MSP430FR family would be
a solid somewhat radiation-tolerant but non-FT substitute, which is
today widely used aboard a broad variety of CubeSats and low-
performance COTS products designed for nanosatellite use. The level
of performance offered by such microcontrollers is usually sufficient
only for educational CubeSats and federated systems. However, a
supervisor in our architecture only receives the majority voting results
from the coarse grain lockstep, controls the FPGA, and facilitates
reconfiguration through an ICAP controller in static logic. Hence, the
low level of performance of an MSP430FR, for example, is sufficient,
and allows an ultra-low-cost implementation of our approach for
academic CubeSat projects and scientific instrumentation.

We deployed configuration error mitigation through Xilinx SEM
in combination with supervisor-side scrubbing to safeguard logic
integrity. However, SEM and scrubbing only detect faults in spe-
cific components of the FPGA fabric (e.g. not in BRAM), leaving
significant parts of the design unprotected unless logic-side ECC is
used.

These measures alone, thus, do not provide sufficient protection
for fine-feature size FPGAs. Thus, our software-FT functionality can
locate faults in the partition of a specific tile, allowing the supervisor
to resolve them using reconfiguration. We place tiles in separate
configuration partitions to enable partial reconfiguration of individual
tiles, without affecting the rest of the system.

As depicted in Fig. 1, the supervisor only reacts to disagreement
between tiles, otherwise remaining passive. It maintains a fault-
counter for each tile and acts as a watchdog. When resolving transient
faults within a tile, it increments the fault-counter and induces a state
update through a low-level debug interface. After repeated faults, the
supervisor will replace the tile by adjusting the thread-mapping of
a spare tile, activating it, and rebooting the faulty tile. In case a
system developer indicated threshold is exceeded, the disagreeing
tile is assumed permanently defunct and not re-used as a spare.

To allow supervisor access to a tile and its address space, each
tile is equipped with an AXI debug-bridge (Fig. 5). The supervisor

SPI CTRL MCTLR

MCTLR
Main

Memory

FeRAM
(OS Code)

Tile 3

Tile 1 MMU

MMU

MCTLR
MRAM

(App Code)

SPI ctlr

SPI CTRL
DDR ctlr
+ ECC

SM

SM

X

X

X

Memory
Scrubber
DDR

Scrubber

Tile 4 MMU

SM

Tile 2 MMU

SM

MCTLR
NAND Flash

(Payload Data)

Xs

r/o

S
E
M

I
C
A
P

CLK

CLK

CLK

CLK

CLK
CLK

CLK

Fig. 4: The topology of our tiled MPSoC design. Each tile exists in its own reconfiguration partition and therefore also clock domain,
simplifying routing and logic placement. Reconfiguration partitions are indicated with dashed lines.

5

State
Memory

State
Memory

Debug
Bridge

MMU

X

Tile's State
Memory

Memory
Scrub

CoreIRQ

Inter
faces

Supervisor

C
lo

ck
G

en

C
ac

he

R
es

et
G

en

Xs

r/o

Main
Memory

MRAM
(App Code)

FeRAM
(OS Code)

NAND Flash
(Payload Data)

QSPI ctlr

Xa

DDR ctlr
+ ECC

Other's State
Memory

Fig. 5: The logic-side architecture of a tile. Access to local IP bypasses the cache, while access to global memory passes is cached for
performance reasons.

can trigger execution of self-test functionality within a tile to detect
faults in peripherals. It can also trigger an adjustment of a tile’s thread
allocation as part of Stages 1 and 3, making the MPSoC’s compu-
tational performance, robustness and energy consumption adjustable
at runtime.

Majority voting between tiles can be implemented as distributed
majority decision [36], then requiring no direct intervention of the
supervisor during regular operation. If this is not desired, or lockstep
through interrupt triggered checkpoints is implemented, then the
supervisor should also take care of receiving the voting results
generated on each tile. In that case, the supervisor can access each
tile’s thread mapping via each tile’s debug interface, and if necessary
induce a reset or otherwise manipulate a tile without requiring its
cooperation.

B. Tile Architecture

Our MPSoC design implements multiple isolated SoC-
compartments accessing shared main memory and OS code.
Even though the purpose and function of these compartments is
different, the topology resembles a tiled architecture instead of a
conventional MPSoC design, in which cores share infrastructure
and peripherals. This topology allows to maximize Stage 1’s
fault-coverage capacity and allows task mapping for general-purpose
software. Each such tile contains a processor core, local interconnect,
and peripheral IP-cores and interfaces as depicted in Fig. 5, resides
in its own clock domain, and can be reset independently. Allocating a
clock domain to each tile improves timing, and reduces logic-overlap
and interdependence between tiles. Furthermore, we can then also
utilize partial reconfiguration and frequency scaling for each tile, as
well as clock gating.

Tile

Tile

MMU

SM

DBG

Xs

IF

X

$Core

SM

X

IF

DBG

MMU$Core

TileSM

X

IF

DBG

MMU $ Core

TileSM

X

IF

DBG

MMU $ Core

Fig. 6: A tile’s state memory is accessible to all other tiles in the
system. It provides a write protected, high-speed on-chip possibility
to expose state-relevant data to the MPSoC as a while.

A tile executes a set of thread replicas, and its loss can be
compensated by the rest of the system. To assure a failed tile can
not cause performance degradation in the rest of the system (e.g.,
by continuously accessing DDR or program memory), it can be
disconnected off from the global interconnect by the supervisor. Non-
masked faults (due to radiation, aging, and wear) disrupt the data or
control flow of the software running on a tile. Stage 1 builds upon
this capability at the thread-level, as state differences can be detected
by other tiles and often even by the malfunctioning tile itself [17].

All tiles are equipped with an identical set of peripheral interfaces,
with controllers being mapped to identical locations and address
ranges. The tile address space layout is uniform across the system
and tiles are indistinguishable for software. Hence, application code
and data structures are portable between tiles, simplifying thread
migration drastically. This allows us to reduce the computational cost
and complexity of software-lockstepping.

Thread allocation and information relevant to the coarse-grain
lockstep is stored in a dedicated dual-ported on-chip BRAM on each
tile. This component is denoted as state memory – SM – in the
figures. One port is accessible to the tile’s processor core, while the
other is read-only accessible to the system. This allowing low-latency
information exchange between tiles without requiring inter-tile cache-
coherence or main memory access. The state memory architecture is
depicted in Figure 6. The supervisor can access and modify each
tile’s state memory through its debug interface on each tile.

C. Interconnect Topology & Shared Memory

Figure 4 depicts the MPSoC’s high-level topology. Our MPSoC
design utilizes an AXI interconnect in crossbar mode to allow tiles
access to shared main and non-volatile memory controllers, though
we are currently reworking our MPSoC to instead use a NoC [16].

Main memory is shared between tiles, as SD- and DDR memory
controllers are too large and require too much I/O to instantiate for
each tile. Each tile has full access to a segment of main memory,
which is mapped to the same address range on all tiles (the MMU
component in the figures). All tiles can access main memory read-
only to simplify state synchronization and IPC. The supervisor can
access each set of main memory controllers directly.

For nanosatellite missions to LEO, often only SECDED ECC sup-
port is required and readily available in library IP already [37], while
basic error scrubbing can be facilitated in software. For critical, deep-
space, and long-term missions, block coding should be used instead
to compensate for the increased impact of SEEs and higher likelihood
of MBUs in high-density SDRAM. Reed-Solomon ECC as well as
error scrubbers are available commercially, or can be assembled from
open-source IP. The main memory scrubbers are controlled by the

6

supervisor to avoid potential interference by malfunctioning tiles.
ARM Cortex-A53 as well as Microblaze caches and several local
memories and buffers offer ECC support as basic functionality [37].

To safeguard main memory, FeRAM [38], MRAM [39], and mass
memory from SEFIs, as well as permanent failure, these memories,
their controllers, and their AXI interconnects are implemented re-
dundantly to enable fail-over. This also enables further protective
measures [40], and allows load distribution for timing critical main
memory through segment interleaving. Thereby the available DDR
memory bandwidth is increased and the overall latency for memory
access can be reduced. This also enables us to recover an instance of
a memory controller on short notice without requiring the full system
to be halted2.

Tiles compete for DDR memory access. As our architecture is
implemented on FPGA, the clock frequency of each tile’s processor
core is lower as on ASIC implemented MPSoCs. In consequence,
the global interconnect as well as DDR memory controllers offer
abundant throughput at drastically higher clock frequencies. Each
processor core caches access to shared memory, drastically reducing
the strain on the memory subsystem3. Hence, while in principle
competing for memory bandwidth, even an 8-tile system can not
saturate the two available DDR4 channels in our current MPSoC
design. Ideally however, our architecture should be implemented
using a NoC instead of a global AXI-interconnect crossbar, which
would offer drastically better scalability, more effective caching and
buffering, and also a degree of FT.

V. SUBSYSTEM CONNECTIVITY AND PERIPHERAL I/O

A fault resolved in Stage 1 may cause incorrect data to be
emitted through I/O interfaces. This is an inherent limitation of
coarse-grain lockstep concepts, and can only be slightly alleviated
through additional application-intrusive work-around as described, for
example, in [20]. Instead, this limitation is better solved at the logic
level through interface-level voting, which is possible with minimal
extra logic. For most CubeSats, most nanosatellites, and less critical
microsatellite missions, however, this is usually foregone.

Larger spacecraft already utilize interface replication or even voting
to assure full hardware TMR, usually requiring considerable effort in
hardware or logic to facilitate this replication. Our MPSoC archi-
tecture inherently provides interface replications by design, requiring
no extra measures to be taken, as the individual tile-interfaces can
be directly used for TMRed architecture. Further safeguards are
necessary for very small CubeSats where interface replication is
undesirable, for example, due to PCB-space constraints.

A. Electrical- and Logic-level Interface Voting

For simple embedded interfaces like I2C and SPI connected to
“dumb” sensors or actuators with no user configurable firmware, a
simple majority decision per I/O line is possible. While hardware
voting is challenging for large arrays of voters running synchronized
at very high frequencies, the CubeSat-relevant interfaces are electri-
cally simple, have a very low pin count, and run at relatively low
clock frequencies. Hence, voting for these interfaces can efficiently
be implemented on-chip through simple voters assuming tiles signals
interface activity.

Our coarse grain lockstep mechanics allow software to be executed
with slight timing variations. I/O on these interfaces must be buffered,

2Note that depending on the used OS, a reboot of a tile may be required.
Linux supports modifications to the memory layout and relocation, while
simpler OS, such as RTEMS, do not currently know such functionality.

3Access to a tile’s state memory still bypasses the cache, but this is
implemented directly in high-speed, low-latency on-chip BRAM

which can be done within the FPGA as discussed further also by Li et
al. in [41]. For simplicity, tiles should also indicate that an interface is
active, and we can double-use the chip-select pins present in almost
all I2C and SPI implementations. The voter can use activity on these
pins as indication that the interfaces is active, and delay voting for a
given amount of clock cycles using a set of FIFO buffers. The depth
of these FIFOs thereby determines the maximum delay compensated
by the voter [42].

Note that larger MPSoC variants with 6 or more tiles can host
multiple independent lockstep sets as described in [35]. In this case,
simple buffered voting is insufficient, as tiles could then also run
mixed lockstep groups where threads may be scheduled with much
larger time differentials. This differential will always be shorter than
the duration of a lockstep cycle or the frame time, but in LEO these
may extend to up to several seconds. It would be uneconomical and,
depending on the application, even technically infeasible to buffer I/O
for long duration. However, we consider the design-combination of a
low-end CubeSats that can not afford subsystem TMR, packet-based
communication, with a high-performance 6-core MPSoC not very
attractive and therefore a corner case. If this combination was still
deemed necessary, a straight forward solution would be to maintain
multiple isolated thread-assignment groups.

B. Inter-Subsystem and Controller Networks

Many SPI and I2C implementations support multi-master shared
bus operation, and it is possible to even create large and complex
CAN-bus networks [43]. CubeSats often use these interface standards
for low-speed inter-subsystem communication in simple CubeSat
designs [44], [45]. While packet based interfaces offer far better scala-
bility, reliability, and fault-mitigation properties for this purpose [46],
in reality these concepts will remain in use aboard CubeSats for the
foreseeable future. However, in contrast to interfacing with “dumb”
endpoints ICs, these networks4 usually consist of microcontrollers
running satellite developer provided software. In this case, a better
solution to de-replicating and obtain consensus within the system of
our MPSoC’s tiles is to make the subsystems aware of the replication.

A subsystem controller then can await receiving a second replica of
a command sequence from a different master. Of course this does not
solve the issue of a single tile/master jamming or saturating the bus
due to malfunction. However, most CubeSats using these interfaces
as subsystem-bus currently usually also do not take actual meaningful
countermeasures in this regard. This is technically possible, but
requires entirely different network topologies [43], [46] than the
simplistic single-level bus concepts used aboard CubeSats today [45].

C. Routed and Switched Topologies

For packet-based interfaces such as Spacewire, AFDX, CAN, or
Ethernet, no hardware- or logic-side solution is necessary. There,
packet duplication and integrity checking can be managed efficiently
at the data link, network and transport layers (OSI layers 2 - 4). At
the physical layer, Ethernet and thereof derived technologies such as
AFDX [47] and TTEthernet [48] perform shared medium through
collision detection and micro-segmentation with frame switching.
Then, packet routing (L3) and de-duplication in software at the
higher OSI layers can be deployed, e.g. in software. Today, this is
common practice in relevant industrial applications such as AFDX
and TTEthernet used in related fields such as atmospheric aerospace
or safety critical automotive applications.

The FPGAs considered in our research provide an abundance
of high-speed GTH/GTY transceivers [49]. These are intended to

4In CubeSat jargon often referred to as “buses”.

7

support high-performance serial interfaces such as PCIe, or USB3
host interfaces, which may become attractive for CubeSat use in
the future and have built in error correction support. Even the
smallest XCKU3P part fields 16 such interfaces, and the location
of these interfaces is in very attractive locations for using 2-3 of
them isolated within each of our MPSoC’s tiles [50]. In practice, this
would allow for a very scalable, high-performance CubeSat inter-
subsystem communication architecture [51] at little cost assuming a
the satellite’s high-level design takes this into account.

VI. APPLICATIONS

The MPSoC architecture described in this contribution was de-
veloped for miniaturized satellite use, as an ideal platform for the
software-FT approach described in [17]. It was implemented on
a Xilinx XCKU5P FPGA with modest resource utilization (28%
LUTs, 33% BRAMs, 16% FFs, 5% DSPs) and 1.92W total power
consumption with four Microblaze-equipped tiles. In this design, tiles
were equipped each with one peripheral I2C master controller, one
SPI master, as well as a dual-channel GPIO controller, which is
rather typical for CubeSat applications, while CAN or Spacewire are
today not widely used aboard CubeSats. However, in [17] we also
showed that a tile’s logic footprint is relatively small in comparison
to a large processor core, caches, or globally shared resources such
as the global AXI interconnects and the DDR memory controllers.
Hence, the peripherals allocated to each tile is mostly relevant in
terms of the I/O resources required, not regarding the logic footprint.
We have also developed a variant of our proof-of-concept for the
smallest Kintex Ultrascale+ part XCKU3P-SFVB784-1LV-I, and
could there reduce the energy consumption of the system to 1.78W.

This architecture is not specifically dependent on utilizing
ARM processor cores, but can be implemented with any FPGA-
implementable core. Our choice of the ARM platform was taken in
part to allow thread migration between soft- and hard-cores (e.g.,
on Zynq Ultrascale+), maximum comparability to COTS mobile-
market and embedded MPSoCs with secondary use aboard a major
share of CubeSats. Especially for low-budget CubeSat users in
research or university projects, standard vendor library cores such
as Xilinx Microblaze may be an excellent alternative to our Cortex-
A choice. These cores offer erasure coding and other basic fault-
tolerance features out of the box already, and performed rather well
in radiation tests [37]. They are readily available and often even
free of charge, especially to academics and non-commercial scientific
research users. The relaxed cost, energy, and size constraints aboard
microsatellites and larger spacecraft allow an implementation of our
MPSoC spanning multiple FPGAs. A multi-FPGA MPSoC variant
offers better scalability due to easier routing, can tolerate chip-level
defects, and SEFIs to the globally shared memory controllers, these
can be distributed to different FPGAs. Thread replicas can then be
distributed across FPGAs, allowing non-stop operation even during
full reconfiguration.

This approach and architecture could very well be implemented on
ASIC without reconfiguration and Stage 2, and we see this as a “big-
space” variant of our approach. An ASIC implementation offers lower
energy consumption, and allows higher clock rates due to reduced
timing and shorter paths. If manufactured in an inherently radiation
hard technology such as FD-SoI [52], it would be less susceptible to
transients and more robust to permanent faults. Due to the drastically
increased development cost and required manpower, the resulting
OBC would not be viable for most miniaturized satellite applications
(not anymore “on a budget”).

VII. OUTLOOK & FUTURE WORK

Having developed a proof-of-concept implementation of our archi-
tecture, it must now be subjected to radiation testing to validate it
for on-orbit use. Before this was possible, each individual component
of our architecture first had to be validated separately. This has
been achieved or proven by fellow researchers for all individual
components comprising our architecture except for our software-FT
mechanics.

To validate our software-FT mechanics, we conducted a fault-
injection campaign to deliver the high level of test-coverage required
to assure the effectiveness of our concept implemented in RTEMS.
We presented early fault injection results of this campaign in [53],
demonstrating that the approach is indeed effective and efficient. A
more detailed test report of this campaign is forthcoming and we
hope to publish it in 2019.

We are currently porting our proof-of-concept MPSoC design to the
XRTC KU060 Gen4 backplane family, which is under development
by the Xilinx Radiation Test Consortium (XRTC). We have achieved
an implementation on the Kintex Ultrascale and Ultrascale+ as well
as Virtex Ultrascale+ FPGA families, and the work port our exist-
ing MPSoC implementation to the XCKU060-FFVA1517-1-I is
mostly complete. However, at the time of writing the pin-assignments
and daughtercard connector mappings of the KU060-based backplane
are not yet finalized, and we will have to adjust our design to
accommodate those changes over the course of 2019. This design,
then would then also be directly portable to the space equivalent
part XQRKU060-CNA1509. CubeSat users, however, would with
near certainty still prefer to use the industrial-grade XCKU060 or
XCKU3P due to their lower cost and their reduced power consump-
tion.

VIII. CONCLUSIONS

The 3-stage FT approach combined with its MPSoC host system
presented in this paper is the first practical, non-proprietary, afford-
able architecture suitable for FT general-purpose computing aboard
nanosatellites. It utilizes FT measures across the embedded stack,
and combines topological with software functionality, utilizing only
extensively validated standard parts. Thereby, we enable the use of
nanosatellites in critical space missions, while the architecture allows
trading processing capacity for reduced energy consumption or fault-
coverage.

An OBC relying upon this architecture can be facilitated with
the minimal manpower and financial resources. The MPSoC can be
implemented using only COTS hardware and extensively validated,
and widely available library IP, requiring no proprietary logic or
costly, custom space-grade processor cores. It offers a high level of
resource isolation for each processor, utilizing architectural features
originally conceived for ManyCore systems to achieve FT.

Each tile functions as a stand-alone processing compartment with
dedicated I/O, existing in its own clock domain and reconfiguration
partition, thereby minimizing shared resources and reducing rout-
ing complexity. Compartments were purposefully designed to best
support thread-level coarse-grain lockstep of weakly coupled cores,
while allowing partial reconfiguration without stalling the rest of the
system. The architecture was implemented successfully, and tested
on current generation Xilinx Zynq/Kintex and Virtex FPGAs with 4,
6 and 8 tiles, and validated through fault-injection into RTEMS.

ACKNOWLEDGMENT

We would like to thank Gianluca Furano, Giorgio Magistrati,
Antonios Tavoularis and Kostas Marinis at ESTEC/TEC-EDD and
Melanie Berg at the NASA Goddard Space Flight Center for their

8

support and invaluable feedback. We thank ARM Ltd. for making
available the relevant processor and infrastructure IP. We would also
like to thank the members of the Xilinx Radiation Test Consortium
for their encouragement, support, and discussions.

REFERENCES

[1] M. Langer and J. Bouwmeester, “Reliability of cubesats-statistical data, developers’
beliefs and the way forward,” in AIAA SmallSat, 2016.

[2] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace Applica-
tions: Soft Errors and Fault-Tolerant Design. Springer, 2016.

[3] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-chip technology in next-
generation instruments avionics for space exploration,” in IEEE VLSI-SoC, revised
paper. Springer, 2016.

[4] S. Gupta et al., “SHAKTI-F: A fault tolerant microprocessor architecture,” in IEEE
ATS, 2015.

[5] M. Pigno et al., “A testbench for validation of DST fault-tolerant architectures on
PowerPC G4 COTS microprocessors,” in Eurospace DASIA, 2011.

[6] A. S. Jackson, “Implementation of the configurable fault tolerant system experiment
on NPSAT-1,” Ph.D. dissertation, Naval Postgraduate School Monterey, 2016.

[7] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices 2014-
2015,” in NASA NEPP/ETW, 2015.

[8] L. A. Tambara et al., “Heavy ions induced single event upsets testing of the 28 nm
Xilinx Zynq-7000 all programmable SoC,” in IEEE REDW, 2015.

[9] M. Wirthlin, “High-reliability FPGA-based systems: space, high-energy physics, and
beyond,” Proceedings of the IEEE, vol. 103, no. 3, 2015.

[10] A. Stoddard et al., “A hybrid approach to FPGA configuration scrubbing,” IEEE
Transactions on Nuclear Science, 2017.

[11] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically reconfigurable SRAM-
based FPGAs,” in NASA/ESA AHS. IEEE, 2017.

[12] M. Ebrahimi et al., “Low-cost multiple bit upset correction in SRAM-based FPGA
configuration frames,” IEEE Transactions on VLSI Systems, 2016.

[13] F. Rittner et al., “Automated test procedure to detect permanent faults inside SRAM-
based FPGAs,” in NASA/ESA AHS. IEEE, 2017.

[14] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core
systems: survey of current and emerging trends,” in DAC. ACM, 2013.

[15] P. Meloni et al., “System adaptivity and fault-tolerance in NoC-based MPSoCs: the
MADNESS project approach,” in IEEE DSD, 2012.

[16] N. K. R. Beechu et al., “Hardware implementation of fault tolerance NoC core
mapping,” Springer Telecommunication Systems, 2017.

[17] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing to space,” in IEEE
ATS, 2017.

[18] U. Martinez-Corral and K. Basterretxea, “A fully configurable and scalable neural co-
processor ip for soc implementations of machine learning applications,” in NASA/ESA
AHS. IEEE, 2017.

[19] A. Höller et al., “Software-based fault recovery via adaptive diversity for COTS multi-
core processors,” 2015, arXiv:1511.03528.

[20] B. Döbel, “Operating system support for redundant multithreading,” Ph.D. dissertation,
Dresden University, 2014.

[21] P. Munk et al., “Toward a fault-tolerance framework for COTS many-core systems,” in
IEEE EDCC, 2015.

[22] A. D. Santangelo, “An open source space hypervisor for small satellites,” in AIAA
SPACE, 2013.

[23] E. Missimer, R. West, and Y. Li, “Distributed real-time fault tolerance on a virtualized
multi-core system,” Euromicro ECRTS, OSPERT, 2014.

[24] Z. Al-bayati et al., “Fault-tolerant scheduling of multicore mixed-criticality systems
under permanent failures,” in IEEE DFT, 2016.

[25] U. Kretzschmar et al., “Synchronization of faulty processors in coarse-grained TMR
protected partially reconfigurable FPGAs,” Elsevier RESS, 2016.

[26] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with software
fault injection: A survey,” ACM Computing Surveys, 2016.

[27] B. Sangchoolie et al., “Light-weight techniques for improving the controllability and
efficiency of isa-level fault injection tools,” in PRDC. IEEE, 2017.

[28] D. Cotroneo et al., “Experimental analysis of binary-level software fault injection
in complex software,” in 2012 Ninth European Dependable Computing Conference.
IEEE, 2012, pp. 162–172.

[29] R. Natella et al., “On fault representativeness of software fault injection,” IEEE
Transactions on Software Engineering, vol. 39, no. 1, pp. 80–96, 2013.

[30] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in IEEE
World Congress on Services, 2011.

[31] K. Smiri et al., “Fault-tolerant in embedded systems (MPSoC): Performance estimation
and dynamic migration tasks,” in IEEE IDT, 2016.

[32] Z. Al-bayati et al., “A four-mode model for efficient fault-tolerant mixed-criticality
systems,” in IEEE DATE, 2016.

[33] N. T. H. Nguyen, “Repairing FPGA configuration memory errors using dynamic partial
reconfiguration,” Ph.D. dissertation, The University of New South Wales, 2017.

[34] C. M. Fuchs et al., “Enhancing nanosatellite dependability through autonomous chip-
level debug capabilities,” in Springer ARCS, 2016.

[35] ——, “Dynamic fault tolerance through resource pooling,” in NASA/ESA AHS. IEEE,
2018.

[36] N. Katta et al., “Ravana: Controller fault-tolerance in software-defined networking,” in
ACM SIGCOMM. ACM, 2015.

[37] Z. K. Baker and H. M. Quinn, “Design and test of xilinx embedded ecc for microblaze
processors,” in 2016 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2016,
pp. 1–7.

[38] Z. Zhang et al., “Single event effects in COTS ferroelectric RAM technologies,” in
REDW. IEEE, 2015.

[39] G. Tsiligiannis et al., “Testing a commercial MRAM under neutron and alpha radiation
in dynamic mode,” IEEE Transactions on Nuclear Science, 2013.

[40] C. M. Fuchs et al., “A fault-tolerant radiation-robust mass storage concept for highly
scaled flash memory,” in Eurospace DASIA, 2015.

[41] Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple
clock domains in fpga-based tmr circuits,” IEEE Transactions on Nuclear Science,
vol. 57, no. 6, pp. 3506–3514, 2010.

[42] J. Standeven, M. J. Colley, and D. Lyons, “Hardware voter for fault-tolerant transputer
systems,” Microprocessors and Microsystems, vol. 13, no. 9, pp. 588–596, 1989.

[43] A. T. Tai, S. N. Chau, and L. Alkalai, “Cots-based fault tolerance in deep space:
Qualitative and quantitative analyses of a bus network architecture,” in Proceedings
4th IEEE International Symposium on High-Assurance Systems Engineering. IEEE,
1999, pp. 97–104.

[44] H. Kimm and M. Jarrell, “Controller area network for fault tolerant small satellite
system design,” in 2014 IEEE 23rd International Symposium on Industrial Electronics
(ISIE). IEEE, 2014, pp. 81–86.

[45] J. Bouwmeester, M. Langer, and E. Gill, “Survey on the implementation and reliability
of cubesat electrical bus interfaces,” CEAS Space Journal, vol. 9, no. 2, pp. 163–173,
2017.

[46] C. Wilson, J. MacKinnon, P. Gauvin, S. Sabogal, A. D. George, G. Crum, and
T. Flatley, “µcsp: A diminutive, hybrid, space processor for smart modules and
cubesats,” in AIAA SmallSat, 2016.

[47] Aeronautical Radio, INC, ARINC Specification 664: Avionics Full Duplex Switched
Ethernet (AFDX), 2005.

[48] V. Gavrilut et al., “Fault-tolerant topology and routing synthesis for ieee time-sensitive
networking,” in RTNS. ACM, 2017.

[49] G. J. Brebner, “Reconfigurable computing for high performance networking applica-
tions.” ARC, vol. 1, 2011.

[50] J. Anderson, K. Bauer, A. Borga, H. Boterenbrood, H. Chen, K. Chen, G. Drake,
M. Dönszelmann, D. Francis, D. Guest et al., “Felix: a pcie based high-throughput
approach for interfacing front-end and trigger electronics in the atlas upgrade frame-
work,” Journal of Instrumentation, vol. 11, no. 12, p. C12023, 2016.

[51] M. Dreschmann, J. Heisswolf, M. Geiger, J. Becker, and M. HauBecker, “A framework
for multi-fpga interconnection using multi gigabit transceivers,” in 2015 28th Sympo-
sium on Integrated Circuits and Systems Design (SBCCI). IEEE, 2015, pp. 1–6.

[52] M. Kochiyama et al., “Radiation effects in silicon-on-insulator transistors with back-
gate control method fabricated with OKI semiconductor 0.20 µm FD-SOI technology,”
Elsevier Nuclear Instruments and Methods in Physics Research, 2011.

[53] C. M. Fuchs et al., “Towards affordable fault-tolerant nanosatellite computing with
commodity hardware,” in IEEE ATS, 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/327765960

