Efficient Hardware Generation for Dynamic
Programming Problems

Zubair Nawaz#', Todor Stefanov?, Koen Bertels*?

Computer Engineering Lab, Delft University of Technology
The Netherlands
1z. nawaz@ udel ft . nl
3k.l.mbertel s@udel ft.nl

* Leiden Embedded Research Center, Leiden University
The Netherlands
2stefanov@i acs. nl

Abstract—Optimization problems are known to be very hard redundant computations, however the critical path is reduc
problems requiring a lot of CPU time. Dynamic Programming by using therecursive doubling decompositiaigorithm [4].
(DP) is a powerful method, which is typically used to compute The first known implementation of look ahead in DP

large number of discrete optimization problems. This paper . - . . .
pregsents an improved approgch called EVEP (RVE with pre- problems was done in [6], where it was applied to the viterbi

computation) that allows to design highly parallel hardware algorithm and showed its potential for DP problems. It was
accelerators for wide range of DP problems. We applied our shown that the add-compare-select (ACS) operation, which
approach to three representative DP problems. We estimate js nonlinear in nature, is difficult to parallelize. Latehis
speedups to 200% qompared to a pure dataflow approach and work was extended to DP problems [7], [8], again showing
at least 25% to previous RVE approach. . . -
only the viterbi algorithm example. As resources were very

limited at that time, there was less exploited paralleliio.
hint was given to tackle conditional statements in genefic D

Optimization problems are usually very important problemgrmulations.
and take considerable amount of time to compute. ThereSome of the ideas in Section Il has been reported in our pre-
is always a need to solve them quickly, possibly throughious work [9], applied only to Smith-Waterman algorithmdan
parallel computation. Given the great need for CPU powefome simplification relevant to Smith-Waterman were made.
such problems are good candidates for hardware acceleratiwe now term it as RVENP (RVE with no pre-computation).
Dynamic Programming (DP) is a method to compute a largiewas shown that RVENP is a useful method for accelerating
number of discrete optimization problems in various fieldghe Smith-waterman algorithm.
Few examples of optimization problems for which dynamic The work presented in this paper is related to the Delft
programming is applied are the Knapsack, Traveling salesmaiorkbench (DWB) projeét [10]. The DWB is a semi-
problem, Smith-Waterman, shortest path, Viterbi alganith automatic toolchain platform for integrated hardwarensafe
and Planner’s problem. co-design targeting the Molen[11] reconfigurable arclhitee

This paper presents an approach, which extend®#wir- The proposed approach is currently being implemented as an
sive Variable Expansio(RVE) algorithm to some representaextension of the DWARV HW compiler [12] and focuses on
tive DP problems, call it RVEP (RVE with pre-computation)DP problems. [13], [14], [15] are other examples of efficient
The equations for these DP problems are algebraically mast highly focused/restricted HW compilers generating- effi
nipulated to generate highly parallel hardware accelesat@ient hardware for e.g. perfectly nested loops.
using Reconfigurable systems. This approach exposes morghis paper extends the work described in [9] by applying it
parallelism than any other parallel technique at the cost ©f more DP problems, which represent a broad range of such
extra area on FPGA. In case of Smith-Waterman, we estimgi®blems. The main contributions of the paper are:

a 2x speedup at the cost of around 4x more hardware as) an approach called RVEP, which is described by apply-
compared to dataflow approach. This approach is especially ing to 3 representative problems.

suitable for cases where high performance is a priority andz) extension of the algorithm with arbitrary number of
extra area can be used to achieve this. conditional statements.

Our acceleration is based on RVE [1], which is similar 3) an estimation of speedup and hardware cost and its
to techniques like back substitution [2], look ahead com- ~ comparison with other best available approaches.

putation [3], [4] and block back-substitution [5]. In all of
these techniques, the recurrence is iteratetimes, expanded The paper is organized as follows. Section Il describes 3

and rearranged to calculate the resultMfiterations of the 1peir workbench is sponsored by the hArtes (IST-035143% MOR-
original recurrence. All these transformations producetaf PHEUS (I1ST-027342) and RCOSY (DES-6392) projects.

I. INTRODUCTION

G|A|C|G|G|A alblalc|d|alc]|cC .
O|2|4|6|-8]|10]12 ofofofoflofoflofo]|o - o ol-2rae2
G|2|1|2]|3|5]| 7|9 clO|ofoofafs]afr]1 a cfi-1,j-1]+1 cli-2,-1]+1
Ala|la|2]|0of-2|4]|s6 alo|l| || f2]f2]-2 Fli-11+g ——F[-2-11+g+x(i-1,] X
2,1+ c cfi-1,j-2]+1
T|e|a|0|1]|a]=]s dlo]a]af1f]z]2]2]> F[M‘H]*ZQEFF[i[—:i—IZ;lZ:;g*X[l*WM o
c|l8|5|2[1|0]|-=2]|-= clo|r|s]|2|2]2|2]3]|s F[i-1,-2+3g s cfi-1j-21+1 cfi-2,j-1]
Gl10|7|4]|1|2]|1]1 dfo|s|s|1]|2]|3]|3]|3]s3 Fli-2-1]+g#xfij] K i i
ol el I R e djo:]:]:]213]3]3]= FI) —FI1 1R 20201 190 [:] ol v A
Al14|-11|-8|5|-2|1[4 clo|r|s]arf2]3]|s|s]|4 Rt - 2legexii] cli-1.j-1]—5cli-2,j-2]+1
(a) Needleman-Wunsch (b) LCS __Fli2i1+3g i1 1]~ cfi-2-21+1
F[MJ-1]+29(F[l-vz,]-vz]+29+x[l-1‘]-1] o) ‘c' »
Figure 1. Scoring Matrix, wheg = —2 and z[i, j] = 1 when S[i] = T[] it ofi-1.] of-2i) of-142]
otherwise—1. Elements in bold show the traceback. T2 o2
Flij-21+2g
(@) NW (b) LCS
representative DP problems. Then in Section IIl, we describ Figure 2. RVE Expanded
the steps and apply on each of the problems. In Section 1V,
we estimate the hardware acceleration as compared to dataflo
and RVENP as given in [9]. Finally, Section V concludes the
paper with future work. Fli,j—1]+g
. Fli—1,j— 1]+ =i, j]
Il. REPRESENTATIVEPROBLEMS Fi, j] = max . : (2)
Fli—1,j]+g
In this section, we will describe representative problems 0

encompassing a broad range of DP problems.
where F'[0,0] = F[0,j] = F[;,0] =0, for1 <i < m and
A. Needleman-Wunsch (NW) Algorithm 1<j<n.
NW is a global alignment algorithm for two biological
sequences [16]. The optimal alignment scétg, j] for two C. Longest Common Subsequence (LCS) problem
sequences$|1..i] andT'[1..5] is given by the following recur-

rence equation. Given a string of characters, if some of the characters are

deleted from that string, then the resulting string is chle
Fli,j—1]+g¢ subsequencd-or exampleZ = (a,d, c¢) is a subsequence of
o N i o X = {(a,b,a,c,d,a,c,d). Given two subsequences andY’,
Fli, j] = max ¢ Fli = 1,7 — 1] + [i, j] @ we say thatZ is alongest common subsequerafeX andY’,
Fli—1,j]+g if Z is longest among all subsequences common to Both
andY [17]. Let c(i,j) is the length of the LCS for sequences

where F'[0,0] = 0, F[0,j] = g x j and F[i,0] = g x i, for = y. andYj;, then its formulation fori, j > 0 is given by

1 <i<n1<j<m,nandm are lengths ofS and

T respectively. Thec[i, 5] is the score for match/mismatch,
_depending uriontwheml;ﬁ[;] = T[j]t_or S[i] # _T[j]. Theg] {C[Z» —1,5—1]+1 it 2 =y,
is some constant penalty for inserting a gap in any sequence. ¢[¢;J]= . C N _
A table is filled using Equation 1 for the two sequences. The max{cli, j =1, cli = 1,51} if 2 7 y.

traceback to find the optimal solution is always started from
bottom right corner of the table. For most of the DP problem\é\’,herec[l’]] =0fori=0orj=0. Similar to NW, traceback
traceback is done in a similar way. Figure 1a shows a tab'g-Started from _bottom ”ght corner of the table_._Thg LCS as
fill-and-traceback example. The global alignment as a testfc ge.t from Flgu.re 1b 'S<a’c.’ d,c). The cor.1d|t.|on in the
of traceback shown in Figure 1a, is recursive formulation along with max make it different from
the previous two examples. Another very well known problem

which has a similar structure is the Knapsack problem.

®3)

B. Smith-Waterman (SW) Algorithm IIl. RECURSIVE VARIABLE EXPANSION FORDP PROBLEMS

It is a local alignment algorithm for two biological se- In this section, we describe the steps of our approach by
guences. It has similar formulation as NW with three changeapplying it on the examples in Section II. Since NW and SW
First is the addition of fourth term O in the max equation ofre very similar, we will only show the steps for SW where
NW, second is the different boundary condition and the thiit is different from NW. We have termed this approach as
is that traceback starts from the highest value any wheiteein tRVER The transformed equations when mapped on hardware
table till it reaches a certain threshold value or 0. The llocaxhibit more parallelism than dataflow and RVENP [9] alone.
optimal alignment scoré&fi,j] is as following. A detailed description is as follows.

A. Apply RVE C. Group sub-equations

We apply RVE partially on Equation 1 of NW to expose In NW, Equation 4 can be rearranged and simplified to the
three levels of parallelism. The recursion tree after thgliap following.
cation of RVE is shown in Figure 2&[i, j] can be written
as max of the leaf nodes in Figure 2a. Similarly, we get the

recursion tree shown in Figure 2b when RVE is partially i (Pl =2 Fli=2,5]) + 29

applied on LCS. The edge labels in Figure 2b define theF[4] = max i Fli-1,j-21+C (6)
condition asA definesz; = y;, B definesz; = y;_1, C iti Fli—2,j—2]+Cs
definesz;_1 = y;_1, D definez;,_, = y; andA’, B’, C’, D’ v Fli—2,7—1]+Cs

are the complement oll, B, C, D respectively.
, where Cy = ((g + (afi,j — 1] = [i,j])) = 39), Co =
B. Remove redundant sub-equations (29 +afi—1,j—1]) = (2fi — 1,5 — 1] + [i, j])) = (29 -
In case of NW, there are some leaf nodes which amgi,j]) + «[i — 1,7 — 1] and C5 = (3¢9 > (g9 + (z[i,]] >
redundant, the reduced equation after removing the reduindal: — 1, j]))) for Equation 4. Here- is defined as the max

nodes is the following. operator.
In LCS, Equation 5 can be rearranged and simplified to the
i Fli,j—2]+2g following.
i Fli—1,j—2]+g+=z[i,j—1]
il Fli—1,j—2]+3g cli—2,7—-2]+2 Al
i Fli—1,j—2+g+a[ij] cli—1,7-2]+C] A2V A6
v Fli—2,j—2]+2g+z[i—1,j—1 o ci—2,7—1]+C5 A3V A6
R N) N () [e (7)
vi Fli—2,5—-2]4z[i—1,j—1]4z[4,]] max C[’L,j — 2] A4
vii Fli—2,j—-1]4+3g cli—2,j—2]+1 A5
viti Fli—2,j—1]+g+z[i,j] cli — 2, 7] AT
iz Fli=2,j—1]+g+ali—1,] ‘ '
1 if A2 1 if A3
x F[i—2,5]42g WhereC{:maX and Cl=max .
o 0 if A6 0 if A6
The 13 leaf nodes in Figure 2a are reduced to 10 sub-it is possible that42 and A6 are true at the same time.
equations in Equation 4. Similarly for A3 and A6.

When the conditional statements are mixed in a max state-
ment, then it is not obvious to remove the redundancies Bs Precompute cost function
in the case of LCS, shown in Figure 2b. The non-associativePrecomputation for an iteration means to do a part of
nature of conditional statements make it difficult to get asomputation for the current iteration in some earlier itiera
additional benefit from applying RVE. It is algebraicallywhere its contents are known. This can further increase the
correct to take the maximum of all the unique nodes anghrallelism without increasing the hardware. This is areext
any statement will be only effective when its accompanyirgjon to the work described in [9], which reduces the critical
conditional statement is also true, otherwise it will be BeT path without an increase in area on an FPGA.

c[i,j] after RVE expansion can thus be written as follows: In NW, while F[i,j] is being computed”;, C> and Cs
for next iteration of (i, j) values defined agi’, ;') can be
cli—2,7—2]+2 Al computed in parallel as shown in Figure 5.
cli—1,j—2]+1 A2 _ Similarly in LCS, the contents of’{ andC; in Equation 7
. is known a priori, therefor&{,C%, A4 and A7 for the next
cli—2,7—-1+1 A3)) A . S)
o iterationof (4, j) defined agi’, j/) can be computed in parallel
ci,f] = cli,j —2] A4 (5) With computation ofci, j] for the current iteratiorti, j). The
’ maxqcli—2,j—2]+1 A5 circuit for LCS as given by Equation 7 is shown in Figure 6.
cli—1,5—2] A6 C7 and (Y are also optimized t@€*[i, j] in Figure 6.
cli—2,5—1] A6 E. Fill the block and mix with dataflow
cli —2,74] A7

In NW, Equation 6 only computeB(i, j) (i.e. O1) as shown
whereAl = ANC, A2 = (ANC")V(A'AB), A3 = (AANC")V in Figure 3a. We can comput&(i,j — 1), F(i — 1,7) and
(A'AD), A4 = (A'AB’), A5 = (A AB'AC)V(A'AD'AC), F(i—1,5—1) (i.e. 02, O3 and O4 as shown in Figure 3a)
A6 = (AAANB' ANC)YV (A AND' ANC")yand AT = A’ A D', using the same steps as followed for findifigy, 7). All these
Here A A C meansA AND C, AV C meansA OR C. The unknown variables in a block can be computed in parallel,
Equation 5 has only 8 sub-equations as compared to 13 leafthere are no dependencies among them. The whole table
nodes in Figure 2b. can be filled as shown in Figure 3c, which is like dataflow

0|-2|-4|-6|-8|-10|-12|-14|-16|-18| Cycle4— — — — — — —
2| oz] o3| oz| o3| A
4 93‘ 93’ /03‘J 93/ o3 Cycle 3— — —
©|,/198 /) 04| /107
8 |o3jof| o301 |03 93" 03 . Cycle 2— —[— —
-3 je2 g1 -10| /107 92/ 192 92/ .. B B
-2 -1 i-3 -12/O§J /Oé /03") 93 Qé . Cycle 1- A _
i-2 i-2 04 -14 02 I:.(D’Z 02 2
i1 o4 | 02 i-1 02 -16|08 03¢ 03] 03 03 .
i 03 | o1 05 | 03|01 -18 \332/ PQ o2 ;32/ cli-2j-1] Cfijl cli-1j-2] clij-2] cli-2,] 1 cfi2j2 2
(a) block b=2 (b) block with b=3 (c) sequence of fill
Figure 6. Circuit for LCS as given by Equation A2”,A3” and A4”,A7”
Figure 3. Filling the table are based oifi’, j').
F(i. j)
oyoles ——————LF——————— IV. ESTIMATE FORHARDWARE ACCELERATION AND COST
Cycle2 ———l———~=—— ———— cfij]
Cydle1 — e This section presents the estimate of the time and hard-

ware for 3 monadic DP problems using dataflow, RVENP
and RVEP. Even though this section presents the derived
hardware circuits for the RVEP equation, embedding them in
e e the DWARV compiler [12] is a mere implementation issue and
(@) Nw (b) LCS not a conceptual one.

Figure 4. Circuit for one element The respective equations after applying the precompuratio
will result in circuits shown in Figure 5 and Figure 6 for NW
and LCS respectively. Similarly circuits for NW and LCS with

at block level. In Figure 3c, the number on the blocks shovesitaflow implementation are shown in Figure 4a and Figure 4b
the sequence of fill and all blocks with the same number aigspectively. In Figure 5 and 4a , LUT denotes the table used
executed in parallel. to get the value ofc[i, j] in Equation 1 and 6 respectively.

In DP problems, we fill the complete table, find the max- We have tried to estimate the time and hardware for 3 DP
imum value, which is mostly at the bottom right corner oProblems. Itis assumed that the time for each cycle is equal t
the table and then trace back to find the solution. We c#ie latency of one adder, comparator, LUT or MUX operation.
avoid filling the whole table for all those problems whos&VEP extension is applied to these problems, the circués ar
maximum is at bottom r|ght CorneF(i,j) is chosen from draWn, then the hardware and time is estimated for it. When
any of the sub-equation, therefore can be traced back tR¢ dataflow approach is applied, then the maximum number
the respective element. In a block, we only need bound#i{steps in a table of dimensionsx n is m+n—1. Therefore,
elements to compute, therefore computation of 04 can Be&ach step takes cycles, then the total time to compute the
avoided in Figure 3a. This saves area on FPGA. This savigole table is:(m-+n—1). The maximum number of elements

can be increased, when we apply RVE with a larger blocki§ be computed in parallel are equalito= min(m, n). If h.
factor as shown in Figure 3b. guantifies the amount of hardware used to compute a single

I%ement, then the maximum amount of hardware needed are

algorithm, the traceback starts from the maximum value & tﬁe de: In CaE? OffFfj\./ENP _and RVE:’ the n:jaxth)Jm number(;af
table, that can be anywhere in the table. Therefore we ha}}gpsln a:nta e?l |m1enS|(;)l?;3><nt a; neef Elto ke ;]OTpUIed
to completely fill the table. This reduction technique can paes = %] + [§] — 1 and the number of blocks that needs

b b

. I I m n min(m,n) mod b

used for most of the DP problems, as in most of them, tl?% be computed in parallel arg=min(| 3 |,| § |)+=mimgimett
traceback starts from bottom right corner.

Cyclel— 4 ——————— - ——-

We cannot apply this technique for SW, as according to t

9]. Similarly, if each step take cycles, then the total time
to compute the whole table ig x s. If h; is the amount

of hardware used to compute a block, then the maximum
amount of hardware needed g x n;. Results for time and
hardware estimation for 3 problems by applying three dififeer
approaches are summarized in Table I.

When RVEP is applied to SW, it gives a 2x speedup as
e 4 i ST compared to the dataflow implementation of SW at the cost
]] ‘ ‘ of around 4x more hardware. It is 25% better than RVENP
at the cost of little extra hardware. Similarly, RVEP gives a
Figure 5. Circuit for computing an element of RVEP for NW deoh using Speedup of 1.52x as compared to the dataflow implementation
Equation 6. of NW at an extra cost of 4.25x the hardware. Precomputation

Cycle 4

Cycle 3

S[] TG-11 S[i1 TH1 g 3g S[i1 TG1 29 S[i-1] T[-1F([ij-2] Fli-2j] 2g F[i-1j-2] CiF[i-2j-2] CoF[i-2,j-1] Cs

Table |
TIME AND HARDWARE ESTIMATION

Time Hardware
(cycles) + - registers LUT/MUX
variable val' | speed} var val" | over- var val' | over- var val' | over- var val' | over-
up? head head head head
Dataflow 4(m4n—1) 396 1 3xly 150 1 3xly 150 1 1xly 50 1 1x1y 50 1
SW | RVENP | s(z]+[2]-1) | 245 | 1.62 | 1sxn, | 450 3 21xny | D25 | 3.5 axny | 100 4 4xng 100 2
RVEP afz]+[2]-n] 196 | 2.02 | 18xny, | 450 3 21xny | D26 | 3.5 oxng | 225 | 45 | 4axno 100 2
Dataflow 3(m4n—1) 297 1 3xly 150 1 2x1y 100 1 1xlg 50 1 1x1lg 50 1
NW [RVENP | sJz]+[2]-1)[245 | 1.21 | 18xn, | 450 3 17xny | 425 | 425 | axng 100 4 4xng 100 2
RVEP a(m]+[2]-» | 196 | 1.52 | 1sxn, | 450 3 17xny | 425 | 425 | oxny | 225 | 45 | 4axns 100 2
Dataflow 2(m4n—1) 198 1 1x1y 50 1 2x1y 100 1 1xly 50 1 1x1y 50 1
LCS| RVENP | sz]+[2]-1) | 245 0.81 | sxn, | 200 4 17xny | 425 | 4.25 | 10xny | 250 5 1axny | 350 7
RVEP afz]+[2]-1] 196 | 1.01 | sxno 200 4 17xny | 425 | 4.25 | 12xny | 300 6 14xny | 350 7
values calculated fom=50 & n=50, Zwith respect to the dataflow case , RVENP is without pre-cdatiun, RVEP is with pre-computation.

lg=min(m,n)=50, ng:min(L%J,L%J)‘Fimin(m’;) mod 2 _o51

gives a boost of 26% as compared to RVENP at the cost ¢f] K. Parhi, “Look-ahead in dynamic programming and quzetiloops,”
small hardware. However, RVEP does not improve the speed in Circuits and Systems, 1989., IEEE International Symposam

: .) pp. 1382-1387 vol.2, May 1989.
for LCS as compared to dataflow implementation, despite thg) i parhi, “Pipelining in dynamic programming architers,” Signal

fact it is using extra hardware. RVENP even slows it down. Processing, IEEE Transactions ovol. 39, pp. 1442-1450, Jun 1991.

The reason for this slow down lies in the recurrence equatiolfl Z:- Nawaz, M. Shabbir, Z. Al-Ars, and K. Bertels, "Accedtion of smith-
waterman using recursive variable expansion,lith Euromicro Con-

of LCS, which does not have enough associative operatdss. It ;o ence on Digital System Design (DSD-2008). 915-922, September
the presence of associative operators, which helps in iegluc ~ 2008.
the depth of the circuit. [10] “Delft workbench. online:http://ce.et.tudelft.BYWWB/."
[11] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels Kiizmanov, and
E. M. Panainte, “The molen polymorphic processtEEE Transactions
V. CONCLUSION on Computerspp. 1363— 1375, November 2004.
. . . élZ] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjié¢ Lu,
In this paper, we have improved our previous approach[9], and S. Vassiliadis, “Dwarv: Delftworkbench automated réigurable

named RVEP, that can generate a h|gh|y para||e| circuit fer D vhdl generator,” inin Proceedings of the 17th International Conference

problems. RVEP relaxes some constraints presented in-previ Fie'dzgg’?grammab'e Logic and Applications (FPLOPp. 697-701,
: ugust .

ous work to make it suitable for wide range of DP problem{m] “Roccc. online: http://www.cs.ucr.edufoccc/.”
We have applied it to three representative DP problems, tlg] “Spark: A parallelizing approach to the high level dyegis of digital

circuits. online: http://mesl.ucsd.edu/spark/.”
among them show better speedups than dataflow approacﬂg’s}tA_ Putnam, D. Bennett, E. Dellinger, J. Mason, P. Suadgan, and

the expense of more area. In case of SW, we reported a 2x s. Eggers, “Chimps: A c-level compilation flow for hybrid cfpga
speedup compared to the dataflow approach and at least 25% architectures,” inField Programmable Logic and Applications, 2008.

. FPL 2008. International Conference ppp. 173-178, Sept. 2008.
faster compared to previous RVENP approach at the cost[ﬂ;] S. Needleman and C. Wunsch, “A general method applicabl the

around 4x area overhead to dataflow approach. As future work, search for similarities in the amino acid sequence of twdggns,” J.
we will propose a generic framework allowing a certain class] ¥|0||4 Bg'-, vol. 4é3, EPL4,43—453,R19Z0h, * and C. Steroduct

: . . . Cormen, C. E. Leiserson, R. L. Rivest, an . oauction
of DP to_be accelera?ed using our approa_ch. We will also tepgt] 1o Algorithms MIT Press, McGraw Hill, second ed.. 2001,
on real implementations rather than estimations.

REFERENCES

[1] Z. Nawaz, O. Dragomir, T. Marconi, E. M. Panainte, K. Bdst and
S. Vassiliadis, “Recursive variable expansion: A loop $farmation for
reconfigurable systems,” iproceedings of International Conference on
Field-Programmable Technology 200D@ecember 2007.

[2] D. Kuck, Y. Muraoka, and S.-C. Chen, “On the number of epiens
simultaneously executable in fortran-like programs arelrthesulting
speedup,Transactions on Computergol. C-21, pp. 1293- 1310, 1972.

[3] R. E. Ladner and M. J. Fischer, “Parallel prefix compuatati J. ACM
vol. 27, no. 4, pp. 831-838, 1980.

[4] P. M. Kogge and H. S. Stone, “A parallel algorithm for th&icent
solution of a general class of recurrence equatiof&ZE Transactions
on Computersvol. C-22, pp. 786-793, 1973.

[5] M. S. Schlansker and V. Kathail, “Acceleration of firstcahigher order
recurrences on processors with instruction level parsflel in Proceed-
ings of the 6th International Workshop on Languages and Glensgfor
Parallel Computing (London, UK), pp. 406—-429, Springer-Verlag, 1994.

[6] G. Fettweis and H. Meyr, “Parallel viterbi algorithm inepnentation:
breaking the acs-bottleneck|lEEE Transactions on Communications
vol. 37, pp. 785 — 790, 1989.

