
Efficient Hardware Generation for Dynamic
Programming Problems

Zubair Nawaz#1, Todor Stefanov∗2, Koen Bertels#3

Computer Engineering Lab, Delft University of Technology
The Netherlands

1 z.nawaz@tudelft.nl
3 k.l.m.bertels@tudelft.nl

∗ Leiden Embedded Research Center, Leiden University
The Netherlands

2 stefanov@liacs.nl

Abstract—Optimization problems are known to be very hard
problems requiring a lot of CPU time. Dynamic Programming
(DP) is a powerful method, which is typically used to compute
large number of discrete optimization problems. This paper
presents an improved approach called RVEP (RVE with pre-
computation) that allows to design highly parallel hardware
accelerators for wide range of DP problems. We applied our
approach to three representative DP problems. We estimate
speedups to 200% compared to a pure dataflow approach and
at least 25% to previous RVE approach.

I. I NTRODUCTION

Optimization problems are usually very important problems
and take considerable amount of time to compute. There
is always a need to solve them quickly, possibly through
parallel computation. Given the great need for CPU power,
such problems are good candidates for hardware acceleration.
Dynamic Programming (DP) is a method to compute a large
number of discrete optimization problems in various fields.
Few examples of optimization problems for which dynamic
programming is applied are the Knapsack, Traveling salesman
problem, Smith-Waterman, shortest path, Viterbi algorithm
and Planner’s problem.

This paper presents an approach, which extends theRecur-
sive Variable Expansion(RVE) algorithm to some representa-
tive DP problems, call it RVEP (RVE with pre-computation).
The equations for these DP problems are algebraically ma-
nipulated to generate highly parallel hardware accelerators
using Reconfigurable systems. This approach exposes more
parallelism than any other parallel technique at the cost of
extra area on FPGA. In case of Smith-Waterman, we estimate
a 2x speedup at the cost of around 4x more hardware as
compared to dataflow approach. This approach is especially
suitable for cases where high performance is a priority and
extra area can be used to achieve this.

Our acceleration is based on RVE [1], which is similar
to techniques like back substitution [2], look ahead com-
putation [3], [4] and block back-substitution [5]. In all of
these techniques, the recurrence is iteratedM times, expanded
and rearranged to calculate the result ofM iterations of the
original recurrence. All these transformations produce a lot of

redundant computations, however the critical path is reduced
by using therecursive doubling decompositionalgorithm [4].

The first known implementation of look ahead in DP
problems was done in [6], where it was applied to the viterbi
algorithm and showed its potential for DP problems. It was
shown that the add-compare-select (ACS) operation, which
is nonlinear in nature, is difficult to parallelize. Later, this
work was extended to DP problems [7], [8], again showing
only the viterbi algorithm example. As resources were very
limited at that time, there was less exploited parallelism.No
hint was given to tackle conditional statements in generic DP
formulations.

Some of the ideas in Section III has been reported in our pre-
vious work [9], applied only to Smith-Waterman algorithm and
some simplification relevant to Smith-Waterman were made.
We now term it as RVENP (RVE with no pre-computation).
It was shown that RVENP is a useful method for accelerating
the Smith-waterman algorithm.

The work presented in this paper is related to the Delft
Workbench (DWB) project1 [10]. The DWB is a semi-
automatic toolchain platform for integrated hardware-software
co-design targeting the Molen[11] reconfigurable architecture.
The proposed approach is currently being implemented as an
extension of the DWARV HW compiler [12] and focuses on
DP problems. [13], [14], [15] are other examples of efficient
but highly focused/restricted HW compilers generating effi-
cient hardware for e.g. perfectly nested loops.

This paper extends the work described in [9] by applying it
to more DP problems, which represent a broad range of such
problems. The main contributions of the paper are:

1) an approach called RVEP, which is described by apply-
ing to 3 representative problems.

2) extension of the algorithm with arbitrary number of
conditional statements.

3) an estimation of speedup and hardware cost and its
comparison with other best available approaches.

The paper is organized as follows. Section II describes 3

1Delft Workbench is sponsored by the hArtes (IST-035143), the MOR-
PHEUS (IST-027342) and RCOSY (DES-6392) projects.

G A C G G A

0 -2 -4 -6 -8 -10 -12

G -2 1 -1 -3 -5 -7 -9

A -4 -1 2 0 -2 -4 -6

T -6 -3 0 1 -1 -3 -5

C -8 -5 -2 1 0 -2 -4

G -10 -7 -4 -1 2 1 -1

G -12 -9 -6 -3 0 3 1

A -14 -11 -8 -5 -2 1 4

(a) Needleman-Wunsch

a b a c d a c c
0 0 0 0 0 0 0 0 0

c 0 0 0 0 1 1 1 1 1

a 0 1 1 1 1 1 2 2 2

d 0 1 1 1 1 2 2 2 2

c 0 1 1 1 2 2 2 3 3

d 0 1 1 1 2 3 3 3 3

d 0 1 1 1 2 3 3 3 3

c 0 1 1 1 2 3 3 4 4

(b) LCS

Figure 1. Scoring Matrix, wheng = −2 andx[i, j] = 1 whenS[i] = T [j]
otherwise−1. Elements in bold show the traceback.

representative DP problems. Then in Section III, we describe
the steps and apply on each of the problems. In Section IV,
we estimate the hardware acceleration as compared to dataflow
and RVENP as given in [9]. Finally, Section V concludes the
paper with future work.

II. REPRESENTATIVEPROBLEMS

In this section, we will describe representative problems
encompassing a broad range of DP problems.

A. Needleman-Wunsch (NW) Algorithm

NW is a global alignment algorithm for two biological
sequences [16]. The optimal alignment scoreF [i, j] for two
sequencesS[1..i] andT [1..j] is given by the following recur-
rence equation.

F [i, j] = max











F [i, j − 1] + g

F [i− 1, j − 1] + x[i, j]

F [i− 1, j] + g

(1)

whereF [0, 0] = 0, F [0, j] = g × j andF [i, 0] = g × i, for
1 ≤ i ≤ n, 1 ≤ j ≤ m, n and m are lengths ofS and
T respectively. Thex[i, j] is the score for match/mismatch,
depending upon whetherS[i] = T [j] or S[i] 6= T [j]. The g

is some constant penalty for inserting a gap in any sequence.
A table is filled using Equation 1 for the two sequences. The
traceback to find the optimal solution is always started from
bottom right corner of the table. For most of the DP problems,
traceback is done in a similar way. Figure 1a shows a table-
fill-and-traceback example. The global alignment as a result
of traceback shown in Figure 1a, is

B. Smith-Waterman (SW) Algorithm

It is a local alignment algorithm for two biological se-
quences. It has similar formulation as NW with three changes.
First is the addition of fourth term 0 in the max equation of
NW, second is the different boundary condition and the third
is that traceback starts from the highest value any where in the
table till it reaches a certain threshold value or 0. The local
optimal alignment scoreF[i,j] is as following.

(a) NW (b) LCS

Figure 2. RVE Expanded

F [i, j] = max



















F [i, j − 1] + g

F [i− 1, j − 1] + x[i, j]

F [i− 1, j] + g

0

(2)

whereF [0, 0] = F [0, j] = F [i, 0] = 0 , for 1 ≤ i ≤ m and
1 ≤ j ≤ n.

C. Longest Common Subsequence (LCS) problem

Given a string of characters, if some of the characters are
deleted from that string, then the resulting string is called a
subsequence. For example,Z = 〈a, d, c〉 is a subsequence of
X = 〈a, b, a, c, d, a, c, d〉. Given two subsequencesX andY ,
we say thatZ is a longest common subsequenceof X andY ,
if Z is longest among all subsequences common to bothX

andY [17]. Let c(i,j) is the length of the LCS for sequences
Xi andYj , then its formulation fori, j > 0 is given by

c[i, j]=

{

c[i− 1, j − 1] + 1 if xi = yj ,

max{c[i, j − 1], c[i− 1, j]} if xi 6= yj .
(3)

wherec[i, j] = 0 for i = 0 or j = 0. Similar to NW, traceback
is started from bottom right corner of the table. The LCS as
we get from Figure 1b is〈a, c, d, c〉. The condition in the
recursive formulation along with max make it different from
the previous two examples. Another very well known problem
which has a similar structure is the Knapsack problem.

III. R ECURSIVE VARIABLE EXPANSION FORDP PROBLEMS

In this section, we describe the steps of our approach by
applying it on the examples in Section II. Since NW and SW
are very similar, we will only show the steps for SW where
it is different from NW. We have termed this approach as
RVEP. The transformed equations when mapped on hardware
exhibit more parallelism than dataflow and RVENP [9] alone.
A detailed description is as follows.

A. Apply RVE

We apply RVE partially on Equation 1 of NW to expose
three levels of parallelism. The recursion tree after the appli-
cation of RVE is shown in Figure 2a.F [i, j] can be written
as max of the leaf nodes in Figure 2a. Similarly, we get the
recursion tree shown in Figure 2b when RVE is partially
applied on LCS. The edge labels in Figure 2b define the
condition asA definesxi = yj, B definesxi = yj−1, C

definesxi−1 = yj−1, D definexi−1 = yj andA′, B′, C′, D′

are the complement ofA, B, C, D respectively.

B. Remove redundant sub-equations

In case of NW, there are some leaf nodes which are
redundant, the reduced equation after removing the redundant
nodes is the following.

F [i,j]=max















































































i F [i,j−2]+2g

ii F [i−1,j−2]+g+x[i,j−1]

iii F [i−1,j−2]+3g

iv F [i−1,j−2]+g+x[i,j]

v F [i−2,j−2]+2g+x[i−1,j−1]

vi F [i−2,j−2]+x[i−1,j−1]+x[i,j]

vii F [i−2,j−1]+3g

viii F [i−2,j−1]+g+x[i,j]

ix F [i−2,j−1]+g+x[i−1,j]

x F [i−2,j]+2g

(4)

The 13 leaf nodes in Figure 2a are reduced to 10 sub-
equations in Equation 4.

When the conditional statements are mixed in a max state-
ment, then it is not obvious to remove the redundancies as
in the case of LCS, shown in Figure 2b. The non-associative
nature of conditional statements make it difficult to get an
additional benefit from applying RVE. It is algebraically
correct to take the maximum of all the unique nodes and
any statement will be only effective when its accompanying
conditional statement is also true, otherwise it will be 0. The
c[i,j] after RVE expansion can thus be written as follows:

c[i, j] =

c[i− 2, j − 2] + 2 A1

max















































c[i− 1, j − 2] + 1 A2

c[i− 2, j − 1] + 1 A3

c[i, j − 2] A4

c[i− 2, j − 2] + 1 A5

c[i− 1, j − 2] A6

c[i− 2, j − 1] A6

c[i− 2, j] A7

(5)

whereA1 = A∧C, A2 = (A∧C′)∨(A′∧B), A3 = (A∧C′)∨
(A′∧D), A4 = (A′∧B′), A5 = (A′∧B′∧C)∨(A′∧D′∧C),
A6 = (A′ ∧ B′ ∧ C′) ∨ (A′ ∧ D′ ∧ C′) andA7 = A′ ∧ D′.
HereA ∧ C meansA AND C, A ∨ C meansA OR C. The
Equation 5 has only 8 sub-equations as compared to 13 leaf
nodes in Figure 2b.

C. Group sub-equations

In NW, Equation 4 can be rearranged and simplified to the
following.

F [i, j] = max



















i (F [i, j − 2] ≻ F [i− 2, j]) + 2g

ii F [i− 1, j − 2] + C1

iii F [i− 2, j − 2] + C2

iv F [i− 2, j − 1] + C3

(6)

whereC1 = ((g + (x[i, j − 1] ≻ x[i, j])) ≻ 3g), C2 =
((2g + x[i − 1, j − 1]) ≻ (x[i − 1, j − 1] + x[i, j])) = (2g ≻
x[i, j]) + x[i − 1, j − 1] and C3 = (3g ≻ (g + (x[i, j] ≻
x[i − 1, j]))) for Equation 4. Here≻ is defined as the max
operator.

In LCS, Equation 5 can be rearranged and simplified to the
following.

c[i, j] =

c[i− 2, j − 2] + 2 A1

max































c[i− 1, j − 2] + C′

1 A2 ∨ A6

c[i− 2, j − 1] + C′

2 A3 ∨ A6

c[i, j − 2] A4

c[i− 2, j − 2] + 1 A5

c[i− 2, j] A7

(7)

whereC′

1=max











1 if A2

0 if A6
andC′

2=max











1 if A3

0 if A6
.

It is possible thatA2 and A6 are true at the same time.
Similarly for A3 andA6.

D. Precompute cost function

Precomputation for an iteration means to do a part of
computation for the current iteration in some earlier iteration
where its contents are known. This can further increase the
parallelism without increasing the hardware. This is an exten-
sion to the work described in [9], which reduces the critical
path without an increase in area on an FPGA.

In NW, while F [i, j] is being computedC1, C2 and C3

for next iteration of(i, j) values defined as(i′, j′) can be
computed in parallel as shown in Figure 5.

Similarly in LCS, the contents ofC′

1 andC′

2 in Equation 7
is known a priori, thereforeC′

1,C′

2, A4 andA7 for the next
iterationof (i, j) defined as(i′, j′) can be computed in parallel
with computation ofc[i, j] for the current iteration(i, j). The
circuit for LCS as given by Equation 7 is shown in Figure 6.
C′

1 andC′

2 are also optimized toC∗[i, j] in Figure 6.

E. Fill the block and mix with dataflow

In NW, Equation 6 only computesF (i, j) (i.e. O1) as shown
in Figure 3a. We can computeF (i, j − 1), F (i − 1, j) and
F (i − 1, j − 1) (i.e. O2, O3 and O4 as shown in Figure 3a)
using the same steps as followed for findingF (i, j). All these
unknown variables in a block can be computed in parallel,
as there are no dependencies among them. The whole table
can be filled as shown in Figure 3c, which is like dataflow

j - 2 j - 1 j

i - 2

i - 1 O4 O2

i O3 O1

(a) block b=2

j - 3 j - 2 j - 1 j

i - 3

i - 2 O4

i - 1 O2

i O5 O3 O1

(b) block with b=3

0 -2 -4 -6 -8 -10 -12 -14 -16 -18

-2 O2 O2 O2 O2

-4 O3 O1 O3 O1 O3 O1 O3 O1 O3

-6

-8

-10

-12

-14

-16

-18

1 2 3 4 5
O2 O2 O2

O3 O1 O3 O1 O3 O1 O3
2 3 4

O2

O1 O3

O2 O2 O2 O2

O3 O1 O3 O1 O3 O1 O3 O1 O3
3 4 5 6 7

O2 O2 O2

O3 O1 O3 O1 O3 O1 O3
4 5 6

O2

O1 O3

5 6

8
O2 O2 O2 O2 O45 6 7

7
8 9

1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

17

(c) sequence of fill

Figure 3. Filling the table

F(i, j-1) g

+ +

F(i-1, j)

� +

F(i-1, j-1)

=

S[i] T[j]

�
Cycle 1

Cycle 2

Cycle 3

x(i, j)

F(i, j)

LUT

(a) NW

�
1

+

c[i,j-1] c[i-1,j]

M
ux

c[i-1,j-1]

=

y[j]x[i]

Cycle 1

Cycle 2

c[i,j]

(b) LCS

Figure 4. Circuit for one element

at block level. In Figure 3c, the number on the blocks shows
the sequence of fill and all blocks with the same number are
executed in parallel.

In DP problems, we fill the complete table, find the max-
imum value, which is mostly at the bottom right corner of
the table and then trace back to find the solution. We can
avoid filling the whole table for all those problems whose
maximum is at bottom right corner.F (i, j) is chosen from
any of the sub-equation, therefore can be traced back to
the respective element. In a block, we only need boundary
elements to compute, therefore computation of O4 can be
avoided in Figure 3a. This saves area on FPGA. This saving
can be increased, when we apply RVE with a larger blocking
factor as shown in Figure 3b.

We cannot apply this technique for SW, as according to the
algorithm, the traceback starts from the maximum value in the
table, that can be anywhere in the table. Therefore we have
to completely fill the table. This reduction technique can be
used for most of the DP problems, as in most of them, the
traceback starts from bottom right corner.

+

F[i,j-2] F[i-2,j] 2g C1

�
F[i,j]

�
F[i-1,j-2]

+

C2F[i-2,j-2]

+

C3F[i-2,j-1]

+

���
g

Cycle 2

x[i’, j’-1]
LU
T

+

S[i’] T[j’-1]

LU
T

S[i’] T[j’] 3g

�
x[i’, j’]

Cycle 1

C1

Cycle 3

Cycle 4

2g

�

C2

x[i’, j’]
LU
T

S[i’] T[j’]

x[i’-1, j’-1]
LU
T

S[i’-1] T[j’-1]

+

Figure 5. Circuit for computing an element of RVEP for NW problem using
Equation 6.

Cycle 2

�

Cycle 1

c[i-1,j-2]

Cycle 3

Cycle 4

�

c[i,j]

�
c[i-2,j-1] C*[i,j]

+

�
0

M
ux

0 A2vA6A3vA6

M
ux

c[i,j-2] c[i-2,j]

�
A4

M
ux

0 A7

M
ux

0

1

+

2c[i-2,j-2]

+
A5

M
ux

0 A1

M
ux

0 A2"vA3"

M
ux

01

C*[i’,j’]

A4" A7"

Figure 6. Circuit for LCS as given by Equation 7.A2”,A3” andA4”,A7”
are based on(i′, j′).

IV. ESTIMATE FOR HARDWARE ACCELERATION AND COST

This section presents the estimate of the time and hard-
ware for 3 monadic DP problems using dataflow, RVENP
and RVEP. Even though this section presents the derived
hardware circuits for the RVEP equation, embedding them in
the DWARV compiler [12] is a mere implementation issue and
not a conceptual one.

The respective equations after applying the precomputation
will result in circuits shown in Figure 5 and Figure 6 for NW
and LCS respectively. Similarly circuits for NW and LCS with
dataflow implementation are shown in Figure 4a and Figure 4b
respectively. In Figure 5 and 4a , LUT denotes the table used
to get the value ofx[i, j] in Equation 1 and 6 respectively.

We have tried to estimate the time and hardware for 3 DP
problems. It is assumed that the time for each cycle is equal to
the latency of one adder, comparator, LUT or MUX operation.
RVEP extension is applied to these problems, the circuits are
drawn, then the hardware and time is estimated for it. When
the dataflow approach is applied, then the maximum number
of steps in a table of dimensionsm×n is m+n−1. Therefore,
if each step takesc cycles, then the total time to compute the
whole table isc(m+n−1). The maximum number of elements
to be computed in parallel are equal told = min(m,n). If he

quantifies the amount of hardware used to compute a single
element, then the maximum amount of hardware needed are
he×ld. In case of RVENP and RVEP, the maximum number of
steps in a table of dimensionsm×n that needs to be computed
ares =

⌈

m
b

⌉

+
⌈

n
b

⌉

− 1 and the number of blocks that needs
to be computed in parallel arenb=min(⌊m

b ⌋,⌊
n
b ⌋)+

min(m,n) mod b

b

[9]. Similarly, if each step takec cycles, then the total time
to compute the whole table isc × s. If hb is the amount
of hardware used to compute a block, then the maximum
amount of hardware needed ishb × nb. Results for time and
hardware estimation for 3 problems by applying three different
approaches are summarized in Table I.

When RVEP is applied to SW, it gives a 2x speedup as
compared to the dataflow implementation of SW at the cost
of around 4x more hardware. It is 25% better than RVENP
at the cost of little extra hardware. Similarly, RVEP gives a
speedup of 1.52x as compared to the dataflow implementation
of NW at an extra cost of 4.25x the hardware. Precomputation

Table I
T IME AND HARDWARE ESTIMATION

Time Hardware
(cycles) + ≻ registers LUT/MUX

variable val1 speed-
up2

var val1 over-
head2

var val1 over-
head2

var val1 over-
head1

var val1 over-
head2

SW
Dataflow 4(m+n−1) 396 1 3×ld 150 1 3×ld 150 1 1×ld 50 1 1×ld 50 1
RVENP 5(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 245 1.62 18×n2 450 3 21×n2 525 3.5 4×n2 100 4 4×n2 100 2
RVEP 4(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 196 2.02 18×n2 450 3 21×n2 525 3.5 9×n2 225 4.5 4×n2 100 2

NW
Dataflow 3(m+n−1) 297 1 3×ld 150 1 2×ld 100 1 1×ld 50 1 1×ld 50 1
RVENP 5(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 245 1.21 18×n2 450 3 17×n2 425 4.25 4×n2 100 4 4×n2 100 2
RVEP 4(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 196 1.52 18×n2 450 3 17×n2 425 4.25 9×n2 225 4.5 4×n2 100 2

LCS
Dataflow 2(m+n−1) 198 1 1×ld 50 1 2×ld 100 1 1×ld 50 1 1×ld 50 1
RVENP 5(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 245 0.81 8×n2 200 4 17×n2 425 4.25 10×n2 250 5 14×n2 350 7
RVEP 4(

⌈

m
2

⌉

+
⌈

n
2

⌉

−1) 196 1.01 8×n2 200 4 17×n2 425 4.25 12×n2 300 6 14×n2 350 7
1values calculated form=50 & n=50, 2with respect to the dataflow case , RVENP is without pre-computation, RVEP is with pre-computation.
ld=min(m,n)=50, n2=min(⌊m

2 ⌋,⌊n
2 ⌋)+

min(m,n) mod 2
2

=251

gives a boost of 26% as compared to RVENP at the cost of
small hardware. However, RVEP does not improve the speed
for LCS as compared to dataflow implementation, despite the
fact it is using extra hardware. RVENP even slows it down.
The reason for this slow down lies in the recurrence equation
of LCS, which does not have enough associative operators. Itis
the presence of associative operators, which helps in reducing
the depth of the circuit.

V. CONCLUSION

In this paper, we have improved our previous approach[9],
named RVEP, that can generate a highly parallel circuit for DP
problems. RVEP relaxes some constraints presented in previ-
ous work to make it suitable for wide range of DP problems.
We have applied it to three representative DP problems, two
among them show better speedups than dataflow approach at
the expense of more area. In case of SW, we reported a 2x
speedup compared to the dataflow approach and at least 25%
faster compared to previous RVENP approach at the cost of
around 4x area overhead to dataflow approach. As future work,
we will propose a generic framework allowing a certain class
of DP to be accelerated using our approach. We will also report
on real implementations rather than estimations.

REFERENCES

[1] Z. Nawaz, O. Dragomir, T. Marconi, E. M. Panainte, K. Bertels, and
S. Vassiliadis, “Recursive variable expansion: A loop transformation for
reconfigurable systems,” inproceedings of International Conference on
Field-Programmable Technology 2007, December 2007.

[2] D. Kuck, Y. Muraoka, and S.-C. Chen, “On the number of operations
simultaneously executable in fortran-like programs and their resulting
speedup,”Transactions on Computers, vol. C-21, pp. 1293– 1310, 1972.

[3] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, 1980.

[4] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,”IEEE Transactions
on Computers, vol. C-22, pp. 786–793, 1973.

[5] M. S. Schlansker and V. Kathail, “Acceleration of first and higher order
recurrences on processors with instruction level parallelism,” in Proceed-
ings of the 6th International Workshop on Languages and Compilers for
Parallel Computing, (London, UK), pp. 406–429, Springer-Verlag, 1994.

[6] G. Fettweis and H. Meyr, “Parallel viterbi algorithm implementation:
breaking the acs-bottleneck,”IEEE Transactions on Communications,
vol. 37, pp. 785 – 790, 1989.

[7] K. Parhi, “Look-ahead in dynamic programming and quantizer loops,”
in Circuits and Systems, 1989., IEEE International Symposiumon,
pp. 1382–1387 vol.2, May 1989.

[8] K. Parhi, “Pipelining in dynamic programming architectures,” Signal
Processing, IEEE Transactions on, vol. 39, pp. 1442–1450, Jun 1991.

[9] Z. Nawaz, M. Shabbir, Z. Al-Ars, and K. Bertels, “Acceleration of smith-
waterman using recursive variable expansion,” in11th Euromicro Con-
ference on Digital System Design (DSD-2008), pp. 915–922, September
2008.

[10] “Delft workbench. online:http://ce.et.tudelft.nl/DWB/.”
[11] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and

E. M. Panainte, “The molen polymorphic processor,”IEEE Transactions
on Computers, pp. 1363– 1375, November 2004.

[12] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev, Y. Lu,
and S. Vassiliadis, “Dwarv: Delftworkbench automated reconfigurable
vhdl generator,” inIn Proceedings of the 17th International Conference
on Field Programmable Logic and Applications (FPL07), pp. 697–701,
August 2007.

[13] “Roccc. online: http://www.cs.ucr.edu/∼roccc/.”
[14] “Spark: A parallelizing approach to the high level synthesis of digital

circuits. online: http://mesl.ucsd.edu/spark/.”
[15] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and

S. Eggers, “Chimps: A c-level compilation flow for hybrid cpu-fpga
architectures,” inField Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, pp. 173–178, Sept. 2008.

[16] S. Needleman and C. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” J.
Mol Biol., vol. 48, pp. 443–453, 1970.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms. MIT Press, McGraw Hill, second ed., 2001.

