
LOOP UNROLLING AND SHIFTING FOR RECONFIGURABLE ARCHITECTURES

Ozana Silvia Dragomir, Todor Stefanov, and Koen Bertels

Email: O.S.Dragomir@tudelft.nl
Computer Engineering, EEMCS, TU Delft, The Netherlands

ABSTRACT

Loops are an important source of optimization. In this paper,

we propose a new technique for optimizing loops that con-

tain kernels mapped on a reconfigurable fabric. We assume

theMolen machine organization and programming paradigm

as our framework. The method we propose extends our pre-

vious work on loop unrolling for reconfigurable architec-

tures by combining unrolling with shifting to relocate the

function calls contained in the loop body such that in every

iteration of the transformed loop, software functions (run-

ning on GPP) execute in parallel with multiple instances of

the kernel (running on FPGA). The algorithm is based on

profiling information about the kernel’s execution times on

GPP and FPGA, memory transfers and area utilization. In

the experimental part, we apply this method to a loop nest

extracted from MPEG2 encoder containing the DCT kernel.

The achieved speedup is 19.65x over software execution and

1.8x over loop unrolling.

1. INTRODUCTION

Loops are an important source for optimization improve-

ment, as many of the kernels in today’s applications (audio,

video, image processing, compression, etc) perform compu-

tations inside loops. The case we address in our research is

when hardware-mapped kernels exist in the loop body. As-

suming the Molen machine organization [1] as our frame-

work, we focus on applying existing loop optimizations to

such loops, with the purpose of parallelizing applications

such that multiple kernel instances run in parallel on the re-

configurable hardware, while there is also the possibility of

concurrently executing code on the GPP.

The contributions of this paper are: a) a method to au-

tomatically determine the unroll factor which gives the best

performance for a loop transformed with shifting and un-

rolling, based on profile information about area consump-

tion, memory transfers, and execution times; b) experimen-

tal results for the DCT (Discrete Cosine Transformation)

kernel showing that the best performance is achieved when

the method is applied with unroll factor 8, which leads to a

This work is supported by the FP6 EU project hArtes, with integrated

project number 035143

speedup of 19.56x and improvement of 1.8x over loop un-

rolling alone (see [11]), while the area consumption is 96%.

The rest of this paper is organized as follows. Section 2

introduces the background and related work. In Section 3,

we present the problem statement and the target application.

In Section 4, we propose our algorithm and prove that it

gives better results than our previous work. We illustrate

this method and show results for a specific application in

Section 5. Finally, concluding remarks and future work are

presented in Section 6.

2. BACKGROUND AND RELATED WORK

The work presented in this paper is related to the Delft Work-

Bench (DWB)1 project. The DWB is a semi-automatic tool-

chain platform which targets the Molen polymorphic ma-

chine organization [1], supporting the entire design process.

In the first stage, profiling and cost estimation are performed

and kernels are identified. After performing the appropri-

ate transformations by collapsing the identified kernels on

set/execute nodes, the compiler [2] generates the exe-
cutable file, replacing and scheduling function calls to the

kernels implemented in hardware with specific instructions

for hardware reconfiguration and execution, according to

the Molen programming paradigm. The DWARV automatic

hardware generator [3] is used to transform the selected ker-

nels into VHDL code targeting the Molen platform.

Several approaches ([4], [5], [6], [7], [8], [9]) are fo-

cused on accelerating kernel loops in hardware. They use

different loop transformations (unrolling, pipelining, etc) to

exploit parallelism and speedup the kernel. Our approach

is different, as we do not aggressively optimize the kernel

implementation, but focus on the optimization of the appli-

cation for any hardware implementation, by executing mul-

tiple kernel instances in parallel. In [11], we presented an

algorithm that automatically determines the optimal unroll

factor for a loop containing a hardware mapped kernel in-

side. [5] and [10] use shifting to expose loop parallelism

and then to compact the loop by scheduling multiple oper-

ations to execute in parallel. We use the same basic idea,

but at a functional level, in order to be able to parallelize the

execution of software and hardware functions.

1http://ce.et.tudelft.nl/DWB/

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
167

3. PROBLEM STATEMENT

In many real life applications, most of the execution time

is spent in loops. Traditional loop transformations (such as

loop unrolling, software pipelining, loop shifting, loop fu-

sion, etc) can be applied successfully for maximizing the

parallelism inside the loop and improving the performance.

The applications we target in our work contain kernels inside

loops. One challenge we address is to use the above men-

tioned loop transformations to improve the performance of

such loops.

In this paper, we extend the work presented in [11] by

combining loop unrolling with loop shifting. In our research,

loop shifting means moving a function from the beginning
of the loop body to the end. We use loop unrolling to expose

the parallelism at hardware level (e.g., run multiple kernels

in parallel) and loop shifting to eliminate the data depen-

dencies between software and hardware functions, allowing

concurrent execution on the GPP and FPGA (as illustrated

in Fig. 3).

The problem statement is: find automatically the un-

roll factor u for a loop (loop nest) containing both code for
GPP and one or more kernels to be executed in hardware,

such that u identical instances of the kernel(s) run in par-
allel while the rest of the code in the loop body executes

on the GPP, leading to the best performance allowed by the

area and memory constraints. The method proposed in this

paper addresses this problem, given a C implementation of

the target application and a VHDL implementation of the

kernel. The performance of this method is compared to that

presented in [11], where only loop unrolling is used.

The target architecture is Molen [1], which allows run-

ning multiple kernels/applications at the same time on the

reconfigurable hardware. As in our previous work, the un-

roll factor is computed (at compile time) taking into consid-

eration profiling information about memory transfers, ex-

ecution times for the kernel in hardware and in software

(in GPP cycles), area requirements for the kernel, and also

memory bandwidth and available area (other kernels may be

configured at the same time). Thus, the hardware configura-

tion at a certain time influences the algorithm’s output. Note

that we consider that the execution time in hardware is con-

stant for all kernel instances, independent on the input data.

The main benefits of this algorithm are that it can be

integrated in an automatic toolchain and use any available

hardware implementation of the kernel. The performance

of the application can thus be improved also when using al-

ready optimized kernels. Also, the performance achieved

with unrolling and shifting is better than when applying only

unrolling. The same method can be easily extended to mul-

tiple kernels inside the loop – if they have similar input sets

– by taking into account the maximum execution time from

the different hardware kernels. The assumptions regarding

the application and framework are summarized in Table 1.

Table 1. General and Molen-specific assumptions
Loop nest

� no data dependencies between different iterations;
� loop bounds are known at compile time;
� loops are perfectly nested;

Memory accesses
� memory reads in the beginning, memory writes in the end;
� on-chip memory shared by the GPP and the Custom Computing
Units (CCUs) is used for program data;

� all necessary data are available in the shared memory;
� all transactions on shared memory are performed sequentially;
� kernel’s local data are stored in the FPGA’s local memory, not in
the shared memory;

Area & placement
� shape of design is not considered;
� placement is decided by a scheduling algorithm such that the
configuration latency is hidden;

� interconnection area needed for CCUs grows linearly with the
number of kernels.

Fig. 1. Loop containing a kernel call

Motivational example. Throughout the paper, we will use

the sample code from Fig. 1. It consists of a loop with

two functions – one function (CPar) is executed always on
the GPP, and the other is the application kernel (K). The
execution time for CPar is much smaller than the execu-
tion time for K on the GPP. Data dependencies exist be-

tween CPar(i) and K(i) in each iteration i, but not be-
tween CPar(i) and K(j) or K(i) and K(j) for any itera-
tions i and j, i �= j. The example has been extracted from
the MPEG2 encoder multimedia benchmark, where the ker-

nel K is DCT and CPar is some code which computes the
parameters for the kernel to be executed.

4. PROPOSED METHODOLOGY

In this section, we present the loop optimization based on

unrolling and shifting, which uses our previous work pre-

sented in [11]. The inputs for our method are the profiling

information (execution time and number of memory trans-

fers) and area usage for one instance of the kernel. We will

also demonstrate that combining unrolling and shifting gives

better results than only unrolling. Figure 2 presents a sim-

plified case of applying the unrolling method, when N mod
u = 0.
This method is extended in Fig. 3 by shifting the soft-

ware part of the loop to the end of the loop body, such

that in each iteration u sequential executions of the func-
tion CPar() are executed in parallel with u identical kernel
instances. The loop has one iteration less than in the case

when only unrolling in applied, as the first u calls ofCPar()

168

Fig. 2. Loop unrolled with a factor u

Fig. 3. Loop unrolled and shifted with a factor u

are executed before the loop (prologue) and the last u kernel
instances are executed after the loop (epilogue).

Note that this optimization may be applied as presented

in this paper, taking into account that there are data de-

pendencies between CPar(i) and K(i), but there are no
data dependencies between CPar(i) andK(j) orK(i) and
K(j) (i �= j).
Next we show briefly how the final selection of the unroll

factor depends on area and memory constraints (consult [11]

for more details).

Area. Taking into account only the area constraints and not
the shape of the design, an upper bound for the unroll factor
is set by:

ua =

—
Area(available)

Area(K) +Area(interconnect)

�
(1)

where: (i) Area(available) is the available area;

(ii) Area(interconnect) is the area necessary to connect one

kernel with the rest of the hardware design;

(iii) Area(K) is the area utilized by one kernel instance.

Memory accesses. For many applications, the memory band-
width is an important bottleneck in achieving the theoret-
ical maximum parallelism. Considering that Tr, Tw and
Tc are the times for memory read, write, and computation
on hardware for kernel K, as determined from the profil-
ing information, the total time for runningK in hardware is
Tr + Tw + Tc. The following notations are used:

Tmin(r,w) = min(Tr, Tw); Tmax(r,w) = max(Tr, Tw) (2)

The performance increases until the computation is fully
overlapped by the memory transfers performed by the ker-
nel instances running in parallel, and we denote by um the

Table 2. Notations
N initial number of iterations (before unrolling);

Tp number of cycles for one instance of the software func-

tion (the function that is always executed by the GPP -

in our example, the CPar function);

TK(hw)(u) number of cycles for u instances of K() running in
hardware, defined in (3) (only the case u ≤ um);

Tloop(sw) number of cycles for the loop nest executed completely

in software;

Tshift(u) number of cycles for the transformed loop nest with u
instances of K() running in hardware;

Sshift(u) the speedup at loop level.

unroll factor where this case happens. Then, um sets another
bound for the degree of unrolling on the reconfigurable hard-
ware. Further increase of the unroll factor gives a converse
effect when the computation stalls occur due to waiting for
the memory transfers to finish. Without reducing the gene-
rality of the problem for most of the applications, we assume
that the memory reads are performed in the beginning and
memory writes in the end.2 Then, the execution time for u
instances ofK in hardware can be expressed as:

TK(hw)(u) =

j
Tc + Tmin(r,w) + u · Tmax(r,w), if u ≤ um
u · (Tmin(r,w) + Tmax(r,w)), if u > um

(3)

This shows that for u > um, the speedup at kernel level

SK =
TK(hw)(u)

u · TK(hw)(1)
is constant, thus it is not worth to un-

roll more. The performance increases with the unroll factor
while the following condition is satisfied:

Tc+Tmin(r,w)+u ·Tmax(r,w) < u · (Tmin(r,w)+Tmax(r,w)) (4)

Thus, the memory bound is derived:

u ≤ um =
$

Tc
Tmin(r,w)

%
+ 1 (5)

Speedup. We use the notations presented in Table 2. Note
that the case u > um is not considered because there is no
speedup increase for the hardware kernels.

Tloop(sw) does not depend on the unroll factor:

Tloop(sw) =
“
Tp + TK(sw)

”
· N (6)

The speedup at loop nest level is:

Sshift(u) =
Tloop(sw)

Tshift(u)
, (7)

where the total execution time (Tshift(u)) for a loop trans-
formed with unrolling and shifting can be expressed like:

Tshift(u) = Tprolog(u) + Tbody(u) + Tepilog(u), (8)

2Assuming that memory reads are performed in the beginning and mem-

ory writes in the end is actually the worst case. Depending on the hard-

ware implementation, the real threshold value for the unroll factor regard-

ing memory transfers might be more permissive.

169

We use the notations:
(i) Tprolog(u) is the time for the loop prologue:

Tprolog(u) = u · Tp (9)

(ii) Tbody(u) is the time for the transformed loop body, con-
sisting of parallel hardware and software execution:

Tbody(u) = (�N/u� − 1) ·max
“
u · Tp, TK(hw)(u)

”
(10)

(iii) Tepilog(u) is the time for the loop epilogue.

For the simplified case in Fig. 3, the epilogue consists of
the hardware parallel execution of u kernel instances:

Tepilog(u) = TK(hw)(u) (11)

For the general case where u is not a divisor of N , it
contains also the execution of the remainder instances of the
software function and hardware kernel. We denote by R
the remainder of the division of N by u: R = N − u ∗
�N/u�, 0 ≤ R < u. We define TK(hw)(R) as:

TK(hw)(R) =

(
0, R = 0

Tc + Tmin(r,w) +R · Tmax(r,w), R > 0
(12)

Then,

Tepilog(u) = max
“
R · Tp, TK(hw)(u)

”
+ TK(hw)(R) (13)

In order to compute Tbody(u) from (10) and Tepilog(u)
from (13), there are different cases depending on the rela-

tions between Tp, Tc, Tmin(r,w) and Tmax(r,w).

a) Tp ≤ Tmax(r,w)
The meaning of the relation above is that inside a loop

iteration the execution time for the software part increases

slower with the unroll factor than the hardware part. The

total execution time for the loop will then be determined by

the execution time of the hardware part, hiding the software

execution completely. For one loop iteration:

max
(
u · Tp, TK(hw)(u)

)
= TK(hw)(u) (14)

and for the epilogue (since R < u):

max
(
R · Tp, TK(hw)(u)

)
= TK(hw)(u) (15)

By substituting (15) in (13), (14) in (10), and (9), (10),
(13) in (8), the total execution time for the shifted loop is:

Tshift(u) = u · Tp + �N/u� · TK(hw)(u) + TK(hw)(R) (16)

b) Tp > Tmax(r,w)
If Tp > Tmax(r,w), then the execution time in software

increases faster with the unroll factor (u) than the execution
time in hardware; for values of u greater than a threshold
value U1, the execution on the reconfigurable hardware in
one iteration will take less time than the execution on GPP.
The execution time for one iteration is:

max
“
u · Tp, TK(hw)(u)

”
=

(
TK(hw)(u), u < U1

u · Tp, u ≥ U1
(17)

If u ≤ U1 then:

u · Tp ≤ Tc + Tmin(r,w) + u · Tmax(r,w) (18)

This determines the threshold value U1 as:

U1 =
⌈

Tc + Tmin(r,w)
Tp − Tmax(r,w)

⌉
(19)

Intuitively, we expect to find the unroll factor that gives

the smallest execution time and thus the biggest speedup in

the close vicinity of U1 (we define the close vicinity as the
set {U1 − 1, U1, U1 + 1}), depending if any of these values
is a divisor of N or not, where the software and hardware

execute concurrently in approximatively the same amount

of time.
Since the computation of Tshift(u) involves the floor (��),

max and remainder functions, it is not possible to give a for-
mula which computes the value of u that minimizes Tshift(u)
without knowing the exact values of the parameters (Tp, Tc,
Tw, Tr). However, to continue our analysis, we can express
Tshift(u) as a choice function between 3 functions, as fol-
lows. We use the notations:

T1 = u · Tp + �N/u� · TK(hw)(u) (20)

T2 = �N/u� · u · Tp + TK(hw)(u) (21)

T3 = N · Tp (22)

T
′
i = Ti + TK(hw)(R), 1 ≤ i ≤ 3 (23)

Then, Tshift(u) is:

Tshift(u) =

8><
>:

T
′
1, (u < U1)

T
′
2, (u ≥ U1) & (TK(hw)(u) ≥ R · Tp)

T
′
3, (u ≥ U1) & (TK(hw)(u) < R · Tp)

(24)

T3 defined above is constant, regardless of the unroll
factor, as it depends only on the software execution time:

T3 = N · Tp. Because the execution time is always com-
puted by taking the maximum between the software and the

hardware times when parallel execution is involved, it means

that Tshift(u) ≥ N · Tp + TK(hw)(R) for all u > U1. There-
fore, the only possible cases when Tshift(u) may be smaller
than Tshift(U1) are some of those when the remainder of U1
is greater than the remainder of u (u > U1). We analyze the
following cases:

170

• U1 is a divisor of N : then, Tepilog(U1) = TK(hw)(U1)
and Tshift(U1) ≤ Tshift(u),∀u > U1;

• U1 is not a divisor of N:
Then, Tepilog(U1) = TK(hw)(U1)+TK(hw)(NmodU1).

For u > U1 such that u is a divisor ofN , Tepilog(u) =
TK(hw)(u) and Tepilog(U1) − Tepilog(u) ≈ Tc (we
consider Tmin(r,w) and Tmax(r,w) to be negligible when
compared to Tc, otherwise the memory bound um will
be very small, and high values for the unroll factor

will not be permitted even if the theoretical speedup

would be very significant).

For this case, we consider that if �N/u� ≥ 10 (the
number of iterations is greater than or equal to 10),

then the speedup increases with less than 10% and is

not significant. When the iteration number is less than

10, than the speedup increase may be significant and

the algorithm computes the total execution time and

the speedup for all the divisors ofN which satisfy the
area and memory constraints.

Integrated constraints. In the end, we choose the unroll
factor that maximizes the speedup, taking into account also

the area consumption and memory transfers.

Let umin be umin = min(ua, um). If Tp > Tmax(r,w)
and the unroll factor threshold U1 satisfies the memory and
area constraints (U1 < umin), the algorithm looks for the
best execution time in the close vicinity of U1. If the unroll
factor that gives the best execution time is not a divisor of

N , the algorithm checks all the divisors of N between U1
and umin and computes the execution time and the speedup.
The selected unroll factor is the one that gives at least 10%

speedup improvement over the speedup achieved for U1.
If U1 does not satisfy the memory and area constraints

or if Tp ≤ Tmax(r,w), the unroll factor is chosen as:

U = min
u

j
u ∈ Z|u ≤ umin ∧ Sshift(u) = max

i≤umin

“
Sloop(i)

”ff
(25)

Comparison with loop unrolling. We compare the execu-
tion time Tshift(u) from (24) with the execution time ob-
tained by applying only loop unrolling (Tloop(hw)), as pre-
sented in [11].

Tloop(hw) = N · Tp + �N/u� · TK(hw)(u) + TK(hw)(R) (26)

Tloop(hw)−Tshift(u) =

8
><

>:

(N − u) · Tp, if u < U1

R · Tp + �N/u� · TK(hw)(u)−
max(R · Tp, TK(hw)(u)), if u ≥ U1

(27)

For u = N , Tloop(hw) = Tshift(u), else Tloop(hw) >
Tshift(u). This means that, for the same unroll factor, the
speedup obtained by combining unrolling and shifting will

be bigger than the one achieved with unrolling only.

Table 3. Initial execution time (cycles)
Hardware Software Percent Speedup

TK 37 278 106 626 34.96% 2.86

Tp 5 292 5 292 100% -

Tloop 4 093 308 10 751 868 38.07% 2.63

Fig. 4. MPEG2 loop with DCT kernel.

5. EXPERIMENTAL RESULTS

In this section, we illustrate the method presented in Sec-

tion 4, which computes automatically the unroll factor that

gives the best performance when applying unrolling and shift-

ing, taking into account the area constraints and profiling in-

formation. As in the case of simple unrolling, the result and

the performance depend on the kernel implementation and

the order of magnitude of the achieved speedup is not rele-

vant for the algorithm. The main benefit of this method is

that it exploits the hardware capabilities more efficiently and

gives better performance than only loop unrolling (presented

in [11]), while it needs the same input data. A comparison

with previous achieved results is performed.

The loop nest presented in Fig. 4 containing the DCT

kernel (2-D integer implementation) was extracted from the

MPEG2 encoder multimedia benchmark and executed on

the Virtex II Pro board. The following parameters were used

for the execution: width = 64, height = 64, block count = 6

(the picture size is 64 × 64, leading to N = 96 iterations).
The DCT implementation operates on 8 × 8 memory

blocks, therefore one kernel performs 64 memory reads and

64 memory writes. The memory blocks in different itera-

tions do not overlap, thus there are no data dependencies

and the first assumption in Section 3 holds.

The VHDL code for DCT was automatically generated
with DWARV [3] tool. Synthesis results (using Xilinx XST

tool of ISE 8.1) show that one instance of the DCT kernel

uses 12% of the total available area on VirtexII Pro. The

execution times with one instance of DCT running on GPP

and then on FPGA were measured using the PowerPC timer

registers. The times are presented in Table 3, using the no-

tations: (i) TK - the number of cycles for one instance of

the DCT kernel; (ii) Tp - the number of cycles for CPar();
(iii) Tloop - the number of cycles for the loop nest.

Next, we apply the method described in Section 4 to

compute the unroll factor.

Area. The upper bound that satisfies the area constraints
computed using (1) is ua = 8.

171

Fig. 5. Speedup obtained with loop unrolling+shifting

Memory accesses. For the considered implementation, the
shared memory has an access time of 3 cycles for reading

and storing the value into a register and 1 cycle for writing

a value to memory; since there are 64 memory reads and 64

memory writes, Tmin(r,w) = 64 and Tmax(r,w) = 192 cycles.
The computation time is Tc = TK(hw)−(Tr+Tw) = 37 022
cycles. Using these values in (5),⇒ um = 579.

Speedup. Since Tmax(r,w) < T p, we need to compute the
threshold value U1 according to (19). For values of the un-
roll factor u greater than U1, the parallel execution of the u
kernel instances in hardware will finish faster than the soft-

ware execution which is performed in parallel.

Using in (19) the values of Tmin(r,w), Tmax(r,w) and Tc
computed above, U1 = 8. By analyzing the total execution
time for all possible unroll factors, we find the global opti-

mum value for u = U1, but also for u = 11 and u = 22. We
observe that the execution times and the speedup (see Fig. 5)

for all factors u > 8 are within 10% of the optimum.

Integrated constraints. As min(ua, um) = 8 and the ex-
ecution time has a global optimum for u = 8, it is easy
to conclude that the chosen unroll factor is 8, leading to a

speedup of 19.65x and area consumption of 96%.

Comparison with loop unrolling. Figure 5 presents the
speedup obtained for different unroll factors, for both un-

rolling and unrolling+shifting. For the chosen factor (u =
8), the speedup improvement with the new technique is 1.8x
compared to previous results. As it can be seen from the

graph, the theoretical performance for the maximum unroll

factor tends to be the same for both techniques, as Sloop(u)
is a monotonously increasing function and Sshift(u) oscil-
lates within 10% of the maximum value (19.65x) for u ≥ 8.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a new technique that combines

loop unrolling and loop shifting, suitable for reconfigurable

architectures. Using profiling information about area uti-

lization, memory transfers and execution times in software

and in hardware for a certain kernel implementation, the pre-

sented algorithm automatically computes the most suitable

unroll factor which allows parallel execution of several ker-

nel instances in hardware, concurrently with software exe-

cution. This model can be easily extended to the case when

more than one kernel are called from inside the same loop

with similar input sets, by taking into account the maximum

of the execution times for the hardware kernels. The im-

plementation of this algorithm in the compiler decreases the

time for design-space exploration and exploits the architec-

tural capabilities more efficiently.

The performance achieved when applying this method is

better than when applying only loop unrolling. Experimen-

tal results show a speedup increase with a factor of 1.8x,

while the total speedup (compared to pure software execu-

tion) is 19.56x, with an area consumption of 96%.
As future work we consider gathering results for more

applications and relaxing some of the assumptions regarding
the loop and the memory accesses.

7. REFERENCES

[1] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,

G. Kuzmanov, and E. M. Panainte, “The MOLEN Poly-

morphic Processor”, IEEE Transactions on Computers,
pp. 1363–1375, Oct. 2004.

[2] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The Pow-

erPC Backend Molen Compiler”, FPL ’04, pp. 434–443,
Aug.2004.

[3] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev,

Y. Lu, and S. Vassiliadis, “DWARV: DelftWorkbench Auto-

mated Reconfigurable VHDL Generator”, FPL ’07, pp. 697–
701, Aug.2007.

[4] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Opti-

mized Generation of data-path from C codes for FPGAs”,

DATE ’05, pp. 112–117, Mar. 2005.
[5] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shifting

and compaction for the high-level synthesis of designs with

complex control flow”, DATE ’04, pp. 114–119, Feb.2004.
[6] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwere-

ins, “Exploiting Loop-Level Parallelism on Coarse-Grained

Reconfigurable Architectures Using Modulo Scheduling”,

DATE ’03, Mar.2003.
[7] J. M. P. Cardoso and P. C. Diniz, “Modeling loop unrolling:

approaches and open issues”, SAMOS ’04, pp. 224–233, July
2004.

[8] M. Weinhardt and W. Luk, “Pipeline vectorization”, IEEE
Transactions on CAD, pp. 234–248, Feb.2001.

[9] J. Liao, W.-F. Wong, and T. Mitra, “A model for hardware

realization of kernel loops”, FPL ’03, pp. 334–344, Sep.2003.
[10] A. Darte, and G. Huard, “Loop Shifting for Loop Com-

paction”, in LCPC, pp. 415–431, 1999
[11] O. S. Dragomir, E. Moscu-Panainte, K. Bertels, and S. Wong,

“Optimal Unroll Factor for Reconfigurable Architectures”, in

ARC ’08, Mar.2008.

172

