
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 726096, 15 pages
doi:10.1155/2008/726096

Research Article
Automated Integration of Dedicated Hardwired IP Cores in
Heterogeneous MPSoCs Designed with ESPAM

Hristo Nikolov, Todor Stefanov, and Ed Deprettere

Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,
2333 CA, Leiden, The Netherlands

Correspondence should be addressed to Hristo Nikolov, nikolov@liacs.nl

Received 27 September 2007; Revised 20 February 2008; Accepted 7 April 2008

Recommended by Sandeep Shukla

This paper presents a methodology and techniques for automated integration of dedicated hardwired (HW) IP cores into
heterogeneous multiprocessor systems. We propose an IP core integration approach based on an HW module generation that
consists of a wrapper around a predefined IP core. This approach has been implemented in a tool called ESPAM for automated
multiprocessor system design, programming, and implementation. In order to keep high performance of the integrated IP
cores, the structure of the IP core wrapper is devised in a way that adequately represents and efficiently implements the main
characteristics of the formal model of computation, namely, Kahn process networks, we use as an underlying programming model
in ESPAM. We present details about the structure of the HW module, the supported types of IP cores, and the minimum interfaces
these IP cores have to provide in order to allow automated integration in heterogeneous multiprocessor systems generated by
ESPAM. The ESPAM design flow, the multiprocessor platforms we consider, and the underlying programming (KPN) model
are introduced as well. Furthermore, we present the efficiency of our approach by applying our methodology and ESPAM tool
to automatically generate, implement, and program heterogeneous multiprocessor systems that integrate dedicated IP cores and
execute real-life applications.

Copyright © 2008 Hristo Nikolov et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

For modern embedded systems in the realm of high-
throughput multimedia, imaging, and signal processing, the
complexity of embedded applications has reached a point
where the performance requirements of these applications
can no longer be supported by embedded system architec-
tures based on a single processor. Thus the emerging embed-
ded system-on-chip platforms are increasingly becoming
multiprocessor architectures (MPSoCs). There are several
possibilities in building MPSoCs.

(1) Homogeneous MPSoCs. In these platforms, each pro-
cessing component is a fixed ISA programmable processor,
for example, IBM’s PowerPC 405 [1], XILINX’s MicroBlaze
[2], and so on. The advantage of such systems is that
in order to generate an executable code, a standard (e.g.,
C/C++) compiler is used. This leads to high flexibility in
case different applications have to be mapped on a particular
multiprocessor platform or a new version of an application is

to be deployed on the same platform. However, the overhead
in the executable code introduced by the compiler in general
limits the performance these systems can achieve.

(2) Multi-ASIP SoCs. The advances in the application
specific instruction-set processors (ASIPs) technology [3] raise
an alternative to build high-performance systems. The ASIPs
extend the fixed ISA processors to the so-called (re-)con-
figurable or extensible processors. Examples of this approach
are Xtensa LX configurable processor from (Tensilica, Santa
Clara, Calif, USA) [4], IXP1200 network processor from
(Intel, Santa Clara, Calif, USA) [5], and TriMedia TM3270
media processor from (NXP, Eindhoven, The Netherlands)
[6]. The ASIPs approach enables system designers to add
application- (domain) specific extensions (instructions) to
a base processor that may have never been considered
or imagined by designers of the original architecture.
The addition of highly customized instructions matched
perfectly to a specific application gives ASIPs the ability to
deliver performance higher than the conventional fixed ISA

mailto:nikolov@liacs.nl


2 EURASIP Journal on Embedded Systems

processors. As a consequence, building multi-ASIP systems
would give better performance than MPSoCs utilizing fixed
ISA processors. Although several design methodologies for
building ASIPs exist [7, 8], building a multi-ASIP system
is yet far from trivial and faces the same problems as any
multiprocessor system, that is, synchronizing the interpro-
cessor data communications and programming the system
as a whole (more sophisticated parallelizing compilers are
required). Moreover, to efficiently customize a multi-ASIP
platform, additional design effort and tools are required.

(3) Heterogeneous MPSoCs consisting of programmable
processors and dedicated HW IP cores. The programmable
processors in such MPSoCs can be both fixed ISA and config-
urable (ASIP) processors. For efficiency, in a multiprocessor
system different tasks have to be executed by different types
of processing components which are optimized for execution
of particular tasks. It is a common knowledge that higher
performance is achieved by a dedicated (customized and
optimized) HW IP core because it works more efficiently
than fixed ISA and ASIP processors. Moreover, many com-
panies already provide dedicated customizable IP cores opti-
mized for a particular functionality that aim at saving design
time and increasing overall system performance. Therefore,
the idea of using dedicated IP cores in heterogeneous systems
is very appealing. These heterogeneous systems are very
attractive because they deliver high flexibility and high
performance at the same time.

The ever increasing time-to-market pressure requires for
systematic and, moreover, automated design methodologies
for building MPSoCs where flexibility and IP reuse are very
important aspects. However, two major problems emerge,
namely, how to design, that is, how to integrate different
dedicated HW IP cores and programmable processors into
heterogeneous multiprocessor systems, and how to program
these systems. The lack of standard interfaces that an IP
core has to provide in order to allow seamless integration,
and the lack of automated programming approaches for
heterogeneous multiprocessor systems only exacerbates these
problems.

1.1. Paper contributions

As a particular solution to the problems stated above, in this
paper, we present our method and techniques for automated
generation of heterogeneous multiprocessor systems where
both fixed ISA processors and dedicated HW IP cores are
used as processing components. Currently, ASIPs are out of
the scope of this work because integrating ASIPs together
with fixed ISA processors and HW IP cores adds an extra
dimension in the complexity of the problems. Our approach
is to solve the problems gradually, therefore, in this work,
we investigated only the integration of third-party HW IP
cores with fixed ISA processors. Our approach for integrating
dedicated IP cores into a system is based on an automated
HW module generation consisting of a wrapper around
a predefined IP core. The structured, highly modularized,
parameterized, and efficient design of our HW module is
one of the contributions of this paper. This contribution
substantially extends the embedded system-level platform

synthesis and application mapping (ESPAM) tool [9] and
allows automated generation and implementation of hetero-
geneous multiprocessor systems.

Another important contribution is that with ESPAM
a heterogeneous multiprocessor system is programmed
automatically where a part of the input application, initially
specified as a sequential C program, is executed by pro-
grammable processors (ESPAM generates program code for
each processor), and a part is implemented by dedicated IP
cores. For the latter ESPAM integrates them by generating
HW modules and connecting them to the other processing
components of the system. Moreover, the structure of the
HW module we propose allows an efficient integration
and connection to alternative communication structures
supported by ESPAM without the need of any additional
modifications of the IP cores.

The success of our method and techniques for auto-
mated programming of the processors in a multiprocessor
system and automated generation of HW modules for IP
core integration into heterogeneous systems is based on
the underlying programming (application) model used in
ESPAM. ESPAM targets data-flow dominated (streaming)
applications for which we use the Kahn process network
(KPN) [10] model of computation. Many researchers [11–
17] have already indicated that KPNs are suitable for
efficient mapping onto multiprocessor platforms. How-
ever, decomposing an application into a set of concurrent
tasks is one of the most time-consuming jobs imagin-
able [18]. Fortunately, our tool flow and programming
approach combines a tool called PNgen [19] that we
have developed for automatic derivation of KPN specifi-
cations from applications specified as sequential C pro-
grams.

The structure of the HW module we propose has been
devised by carefully exploiting and efficiently implementing
the simple communication and synchronization mecha-
nisms of the KPN model. We have identified and developed
a library, that is, a set of generic parameterized components
used by ESPAM to compose an HW module. This is done
by instantiating components from the library, connecting
them, and setting their parameters in correspondence with
the KPN specification. We consider our library of generic
components as an important contribution because by mak-
ing the HW module clearly structured and modularized,
every component becomes more independent and loosely
coupled. Therefore, we are able to design and optimize each
component of the HW module separately. This brings much
convenience for efficient and effective optimization, making
the performance of the generated systems better.

Finally, we would like to mention that the ESPAM and
PNgen tools are open source projects, available for third
parties, and can be downloaded from [20].

1.2. Scope of work

In this section, we outline the assumptions and restrictions
regarding our work presented in this paper. Most of them are
discussed in detail, where appropriate, throughout the paper.



Hristo Nikolov et al. 3

1.2.1. Applications

One of the main assumptions for our work is that we
consider only data-flow dominated applications in the realm
of multimedia, imaging, and signal processing that naturally
contain tasks communicating via streams of data. Such
applications are very well modeled by using the parallel data-
flow model of computation called Kahn process network
(KPN). The KPN model we use is a network of concurrent
autonomous processes that communicate data in a point-to-
point fashion over bounded FIFO channels, using a blocking
read/write on an empty/full FIFO as a synchronization
mechanism. Furthermore, we consider KPNs that are input-
output equivalent to static affine nested loop programs
(SANLP). The properties of such programs are discussed
in Section 1.2.5. We are interested in this subset of KPNs
because they are analyzable at compile time (e.g., FIFO
buffer sizes and execution schedules are decidable) and, as
we show in this paper, HW synthesis from them is possible.
Moreover, such KPNs can be derived automatically from the
corresponding sequential programs [19, 21–23].

1.2.2. FIFO-based integration of IP cores

A key feature of our IP integration methodology is that the
IPs are wrapped with a HW module and the communi-
cation is enabled through FIFOs. In order to achieve high
performance with low overhead, our FIFO-based integration
approach strictly follows the semantics of the KPN model
of computation. Therefore, we motivate this approach by
explaining the most favorable characteristics of the KPN
model that we exploit in order to allow seamless and
automated IP integration.

(1) The KPN model is determinate, which means that
irrespective of the schedule chosen to run the network, the
same input/output relation always exists. This gives a lot of
scheduling freedom that can be exploited when integrating
many different hardware IP cores in a heterogeneous multi-
processor system.

(2) The interprocess synchronization in a KPN is done by
a blocking read/write on empty/full FIFOs. This is a very sim-
ple synchronization protocol that can be realized easily and
efficiently in hardware, thus making the synchronization,
which is an essential part of our IP integration approach, very
simple and efficient in terms of utilized hardware.

(3) The control in a KPN is completely distributed to the
individual processes. Therefore, there is no global scheduler
present. As a consequence, the integration of many hardware
IP cores in a multiprocessor system is a simple task from the
point of view that the local IP controllers do not have to be
connected to and interact with a global scheduler controller.

(4) The exchange of data among processes in a KPN is
distributed over the FIFOs. There is no notion of a single
global data memory that has to be accessed by multiple
processes. Therefore, when multiple IP cores are integrated
into a multiprocessor system and communicate data via
distributed FIFO buffers, resource contention is greatly
reduced.

1.2.3. Multiprocessor platforms

We consider multiprocessor platforms in which the process-
ing components, that is, programmable processors and/or
HW IP cores, communicate data only through distributed
memory units. Each memory unit can be organized as
one or several FIFOs. The data communication among the
processing components is realized by blocking read and write
synchronization mechanism. Such platforms match and
support very well the KPN operational semantics, thereby
achieving high performance when KPNs are executed on the
platforms. Also, compliant with the operational semantics
of a KPN, our platforms support blocking synchronization
mechanism, allowing the processors to be self-scheduled,
avoiding a global scheduler component. If the number of
processing components in a platform is less than the number
of processes of a KPN, then some of the programmable
processors execute more than one process. ESPAM schedules
these processes at compile time and generates program code
for a given processor which code does not require/utilize an
operating system. In our approach, a HW IP core imple-
ments the computation of a single-KPN process. Therefore,
we do not support more than one KPN process to be
implemented by a single-HW IP core. Additional require-
ments for the HW IP cores are discussed in Section 3.2.
The programmable processors and the HW IP cores in our
platforms can be connected by a crossbar switch, a point-to-
point network, or a shared bus. Additional details are given
in Section 2.2.

1.2.4. Research and tools

The KPN model of computation has been widely studied in
our group for more than 7 years. This research resulted in
techniques and tools implemented in the Compaan/Laura
design flow [11] for automated translation of SANLPs
written in Matlab [21, 23] to KPN specifications targeting
dedicated HW implementations on FPGAs [24]. Although
these techniques are very advanced, they currently generate
KPNs with too many FIFO channels which may lead to
inefficient implementations. Also, they do not address the
problem of what the FIFO buffer sizes should be. This is
a very important problem because if the FIFO buffers are
undersized, this leads to a deadlock in the KPN behavior.

We addressed the problems above, and based on the
knowledge we have obtained working on Compaan, recently
we have developed techniques for improved derivation of
KPNs implemented in the PNgen tool [19]. These techniques
allow for automated computation of efficient buffer sizes of
the communication FIFO channels that guarantee deadlock-
free execution of our KPNs. In addition, our group started a
research on design automation for high-performance multi-
processor systems, a challenging and very appealing domain
nowadays. We devised a novel approach for automated
homogeneous multiprocessor systems design, programming,
and implementation. The concept and the techniques behind
it were implemented in a tool called ESPAM [9]. Until
recently, our approach was limited in the sense that only
homogeneous systems containing programmable processors



4 EURASIP Journal on Embedded Systems

could be designed with ESPAM. Consequently, based on
our experience with Laura [24], we developed techniques
that substantially extend the functionality and flexibility of
ESPAM allowing automated integration of programmable
processors and dedicated IP cores into heterogeneous sys-
tems. As we mentioned, the IP core integration is based
on generation of a HW module consisting of a wrapper
around the IP. This approach originates from the general idea
implemented in Laura, that is, generating of HW modules
based on the properties of the KPN model we use. Although
using the same concept in ESPAM, we developed different
techniques in order to enable automated IP cores integration
and connection to the other components of the system, that
is, programmable processors and different communication
structures. By carefully exploiting the main features of a KPN
process, we created a library of parameterized components
used to compose a HW module. In addition, we defined
clear interfaces of the HW module and its components. This
helped us to devise an efficient mechanism for connecting
and synchronizing the components within an HW module
keeping high performance of the integrated IP cores.

1.2.5. Tools inputs

Our ESPAM tool accepts as an input three specifications,
that is, a platform specification, a mapping specification,
and an application specification. The platform specification
is restricted in the sense that it must specify a platform
that consists of components taken from a predefined set
of components. This set ensures that many alternative
multiprocessor platform instances can be constructed and
all of them fall into the class of platforms we consider
(see above). The mapping specification can specify one-to-
one and/or many-to-one mappings (only for programmable
processors) of processes onto processing components. Based
on this mapping, ESPAM determines automatically the
most efficient mapping of FIFO channels onto distributed
memory units. The application specification is a KPN in
XML format derived from an application written as a static
affine nested loop program (SANLP) in C (PNgen) or
Matlab (Compaan). The SANLPs are programs that can be
represented in the well-known polytope model [25]. That
is, an SANLP consists of a set of statements and function
calls, each possibly enclosed in loops and/or guarded by
conditions. The loops need not be perfectly nested. All lower
and upper bounds of the loops as well as all expressions
in conditions and array accesses have to be affine functions
of enclosing loop iterators and parameters. The parameters
are symbolic constants, that is, their values may not change
during the execution of the program. The above restrictions
allow a compact mathematical representation of an SANLP,
enabling the development of techniques for automated KPN
derivation. Many applications in the domain we consider
(see above) can be represented as SANLPs.

1.3. Related work

Several frameworks exist that address the issue of IP or
component integration. Some of the most important are

liberty simulation environment (LSE) [26], BALBOA [27],
MCF [28], and Ptolemy [29]. In general, the method-
ologies proposed in these frameworks are related to our
ESPAM methodology in the sense that we also propose
a component (IP)-based approach to heterogeneous sys-
tems design. However, a major difference is that ESPAM
addresses a different aspect of the heterogeneous systems
design. ESPAM is a component-based framework targeting
automated system synthesis, automated programming, and
automated physical implementation of heterogenous mul-
tiprocessor systems whereas liberty, BALBOA, MCF, and
Ptolemy are component-based frameworks/environments
for system modeling and simulation.

The control-read-execute-write paradigm used to imple-
ment the operational semantics of our HW module wrapper
is very similar to the paradigm used in [29, 30]. The
difference is that in [29, 30], an implementation of similar
paradigm is presented which is suitable and can be used only
for hierarchical modeling and simulation purposes. In our
ESPAM environment, we show an implementation of our
control-read-execute-write paradigm that allows IP core inte-
gration in a physical multiprocessor system. Moreover, we
present how our control-read-execute-write implementation
is fully automatically synthesized/generated from sequential
C code.

There are several approaches for HW design based on
the ANSI C standard such as Handel-C (commercialized
by Celoxica, Abingdon, Oxfordshire, UK [31]) and SpecC
[32]. In contrast to our approach for multiprocessor systems
design, Handel-C targets dedicated HW implementations
on FPGAs. To express parallelism and event sensitivity in
Handel-C, a designer has to use annotations (construct par)
in the programming code. SpecC is a modeling language for
the specification and design of embedded systems at system
level. In [32], the authors propose a design methodology
based on a library of reusable components that includes
several steps which is similar to our methodology. The main
difference, however, is that SpecC is an extension of the
C programming language implying that the designer has
to study it. Also, with SpecC the designer has to specify
the possible parallelism of an application in an explicit
way. In contrast to Handel-C and SpecC, the application
specification in our methodology is a C program written by
using a subset of the ANSI C standard without any special
annotations, that is, SANLP explained in Section 1.2.5. A
SystemC-based approach for design automation of digital
signal processing systems is presented in [33]. The proposed
methodology consists of an automated design space explo-
ration, performance evaluation, and automatic platform-
based system generation. Similarly to our approach, the
input for the design flow contains an executable application
specification (written in SystemC), a target architecture
template (in both approaches built from components taken
from a component library) and mapping constraints of
the SystemC modules (in our methodology, we have a
mapping giving a relation between the application and the
architecture). In order to automate the design process, the
SystemC application has to be written in a synthesizable
subset of SystemC, called SysteMoC [34], whereas our



Hristo Nikolov et al. 5

restriction of the initial C program is to be an SANLP
(see Section 1.2.5). The synthesizable subset of SystemC is
required because for the IP core generation the authors use
high-level synthesis tools which is a major difference with
our concept for heterogeneous MPSoCs design. Instead, in
this paper we propose an approach for dedicated IP core
integration based on a HW module generation consisting of
a wrapper around a predefined IP core.

In our automated design flow for MPSoC design, we use
the KPN model of computation to represent an application
and to map it onto alternative heterogeneous MPSoC
architectures. A similar approach is presented in [35, 36].
Jerraya et al. propose a design flow concept that uses high-
level parallel programming model to abstract HW/SW
interfaces in the case of heterogeneous MPSoC design. The
multiflex system presented in [37] is an application-to-
platform mapping tool targeting multimedia and network-
ing applications. Multiflex uses symmetric multiprocessing
(SMP) and distributed system object component (DSOC)
programming models. For implementation, the multiflex
system targets the StepNP MPSoC platform architecture.
Although the work presented in [35–37] targets hetero-
geneous MPSoC design, the authors do not address the
problem of automated integration of dedicated HW IP cores
into their heterogeneous MPSoCs. In contrast, in this paper
we present efficient techniques for automated integration of
IP cores into heterogeneous multiprocessor systems designed
with ESPAM.

There are several initiatives such as VSIA [38] and OCP-
IP [39] aiming at specifying “open” interface standards, for
example, the virtual component interface (VCI) and the
open core protocol (OCP), which will ease the integration
effort required to incorporate IP cores into a system-on-
chip. SPIRIT [40] is a consortium which aims at “enabling
innovative IP reuse and design automation.” IP-XACT is
a standard defined by SPIRIT that allows to use general
interfaces for connection between the IPs, where for each
interface a reference bus definition is required. The main
focus of these initiatives is to guarantee interoperability
and reusability of a wide variety of IP cores in a “plug-
and-play” fashion but this is achieved at the expense of
more general, application-independent, and relatively slow
interfaces and protocols. Our IP wrappers developed in
ESPAM are not meant to be as general as VCI and OCP, that
is, our wrappers support efficient integration of the specific
type of IPs defined in Section 3.2. This fact and the fact
that our wrappers are customized for every application, that
is, they are automatically generated according to the KPN
specification of an application, guarantee that the highest
possible overall system performance is achieved.

The task transaction level (TTL) interface presented in
[41] is a design technology for programming of embedded
multiprocessor systems. Our programming approach is
similar to TTL in the sense that both target streaming appli-
cations and both use communication primitives. However,
in our approach, we consider only MPSoC architectures
with distributed memory because such architectures give
better timing performance compared to shared memory
architectures. TTL is more flexible because it supports many

communication primitives but programming an MPSoC by
using TTL requires a lot of manual work which is hard (in
some cases even impossible) to automate. In [10], Kahn
proved that by using infinite FIFO queues, the blocking read
in-order mechanism is sufficient to realize communication
and synchronization in any streaming application modeled
as a process network. Due to practical reasons, blocking
write is needed as well because a FIFO implementation
cannot have an infinite size. However, using a blocking
write mechanism and finite memory resources may lead to
deadlock of a KPN when executed. Therefore, we developed
techniques for computing FIFO sizes such that a deadlock-
free execution of our KPNs on our platforms is guaranteed
[19]. In this sense, the blocking read and write, both in-order,
form the minimum set of basic communication primitives
realizing the communication mechanism of a process net-
work when targeting real implementations. Other communi-
cation/synchronization mechanisms add more flexibility but
at a certain price. In comparison with TTL, our platform
model supports only the two basic primitives, which allows
us to fully automate the programming of MPSoCs.

2. PRELIMINARIES

The paper is organized as follows. Here, in Section 2, we
give an overview of our system design methodology and
techniques centered around our ESPAM tool [9]. This is
necessary in order to understand the main technical contri-
bution of this paper presented in detail in Section 3, namely,
automated IP core integration allowing automated hetero-
geneous MPSoCs generation, programming, and implemen-
tation with ESPAM. In Section 4, we present some results
that we have obtained by using ESPAM to design efficient
heterogeneous MPSoCs. Section 5 concludes the paper.

2.1. ESPAM design flow

Our system design methodology is depicted as a design flow
in Figure 1. There are three levels of specification in the flow.
They are System-Level specification, RTL-Level specification,
and Gate-Level specification. The System-Level specification
consists of three parts written in XML format: (1) Platform
Specification describing the topology of a multiprocessor
platform; (2) Application Specification describing an applica-
tion as a Kahn process network (KPN) [10], that is, network
of concurrent processes communicating via FIFO channels.
The KPN specification reveals the task-level parallelism
available in the application. In the presented design flow, we
start from a sequential program written in C and the PNgen
tool [19] automatically converts it into a KPN specification.
(3) Mapping Specification describing the relation between
all processes and FIFO channels in Application Specification
and all components in Platform Specification. The platform
and the mapping specifications can be written by hand or
can be generated automatically after performing a design
space exploration. For this purpose, we use the Sesame
tool [14]. The System-Level specification is given as input
to ESPAM. First, ESPAM constructs a platform instance
from the platform description. The platform instance is



6 EURASIP Journal on Embedded Systems

Platform spec

In
te

r-
co

n
n

ec
t

uPn

uP1

Mapping specification

In
te

r-
co

n
n

ec
t uP1

uP2

P1

P2 PK

Application spec

P1

P2 Pk

KPN

Sequential
program in C

PNgen tool

System-level
specification

ESPAM tool Library
IP cores

C/C++
uP1

C/C++
uPn

Header
files

Platform
netlist

IP cores
in VHDL

RTL-level
specification

Standard C/C++ compiler VHDL synthesizer

MEM CM MEMCM

CC CCuP1 uPn

Silicon
chip

Gate-level
specificationIn

te
r-

co
n

n
ec

t

· · · · · ·

· · ·
· · ·

· · · · · ·

· · ·

Figure 1: ESPAM system design flow.

an abstract model of an MPSoC because, at this stage, no
information about the target physical platform is considered.
The model defines only the key system components of
the platform and their attributes. Second, ESPAM refines
this abstract platform model to an elaborate parameterized
RTL model (RTL-Level specification of an MPSoC) using
the components from the IP library (see Figure 1). The
refined system components are instantiated by setting their
parameters based on the target physical platform features.
Finally, ESPAM generates C/C++ program code for each
processor in the multiprocessor platform in accordance with
the application and mapping descriptions. The program
code is further given to a standard GCC compiler to generate
executable code. In addition, a commercial synthesizer
converts the RTL-Level HW specification to a Gate-Level
specification, thereby generating the target platform gate
level netlist, see the bottom part of Figure 1. This Gate-Level
specification is actually the system implementation.

2.2. Multiprocessor platforms

Our ESPAM flow presented in [9] only supports automated
design of homogeneous multiprocessor platforms, that is,
platforms containing only programmable processors. Here,
we briefly describe these platforms in order to show and
describe clearly, later in Section 3, how we extend ESPAM
to support automated design of heterogeneous multiproces-
sor platforms. The homogeneous multiprocessor platforms
considered in [9] are constructed by connecting processing,
memory, and communication components using communica-

tion controllers (CCs). Our approach is explained below using
the example of a multiprocessor platform depicted in the
bottom-left part of Figure 1. It contains several processors
connected to a communication component (INTERCON-
NECT) using communication memories (CMs), and com-
munication controllers (CCs). The processors have separate
program/data memory (MEM) and transfer data between
each other through the CM memories. A communication
controller connects a communication memory to the data
bus of the processor it belongs to and to a communication
component. Each CC implements the processor’s local bus-
based access protocol to the CM for write operations and
the access to the communication component (INTERCON-
NECT) for read operations. In our approach, each processor
writes only to its local communication memory (CM) and
uses the communication component only to read data from
all other communication memories. Each CM is organized as
one or more FIFO buffers. We have chosen such organization
because, then, the interprocessor synchronization in the plat-
form can be implemented in a very simple and efficient way
by blocking read/write operations on empty/full FIFObuffers
located in the communication memory.

The FIFO organization of the CMs is implemented by the
CCs in hardware which leads to very efficient data transfer,
that is, a processor writes/reads a 32-bit word to/from a
FIFO in 4 clock cycles [9]. If a processor supports direct
FIFO communication, for example, the XILINX’s MicroBlaze
processor [2] used in ESPAM has several dedicated FIFO
(FSL) interfaces (similar to Tensilica’s Xtensa LX), then a CC
implements a single FIFO which is directly connected to the



Hristo Nikolov et al. 7

(a)1 // process P1
2 void main() {
3 for(int k = 1; k <= L; k + +) {
4 read(IP1, in 0, size);
5 execute(in 0, out 0);
6 write(OP1, out 0, size);
7 } }

8 void read(byte ∗port, void ∗data, int length) {
9 int ∗isEmpty = port +1;
10 for(int i = 0; i < length; i + +) {
11 //reading is blocked if a FIFO is empty

12 while(∗isEmpty){}
13 (byte ∗data)[i] = ∗port; // read from a FIFO
14 } }

15 void writ(byte ∗port, void ∗data, int length) {
16 int ∗isFull = port +1;
17 for(int i = 0; i < length; i + +) {
18 //writing is blocked if a FIFO is full

19 while(∗isFull){}
20 ∗port = (byte ∗data)[i]; // write to a FIFO
21 } }

P1 OP1
IP1

CH1

CH4

P2
IP1

IP2
OP1

OP2

CH2

CH3
P3IP1

OP1

In
te

rc
on

n
ec

t

FIFO1

FIFO4

uP1

uP2

CC

CC
FIFO3

CC

FIFO2

IP1 OP1
OP2

IP2 HM

IP1
IP2

OP1
OP2Read Execute Write

Control

(b)

(c)

(d)

Figure 2: Example of heterogeneous MPSoC generated by ESPAM.

data path of the processor (through an FSL). In this case, the
MicroBlaze processor uses a specific instruction to access the
FIFO, reducing the transferring time to only 2 clock cycles
(if blocking does not occur). The reduced time is caused
by the fact that in the FSL communication, the blocking
synchronization is supported and implemented by the state
machine of the processor. For some applications, however,
the number of FIFOs connected to a processor may exceed
the number of direct FIFO links supported by the processor.
In this case, ESPAM first utilizes all the available direct FIFO
interfaces and then connects the remaining FIFOs to the
processor data bus.

2.3. Automated programming

Our methodology and tool-flow for multiprocessor sys-
tem design allow automated synthesis, programming, and
implementation of multiprocessor platforms. Automated
programming of an MPSoC means that the ESPAM tool
automatically generates program code for each processor
in the system, generates the memory map of the system,
and generates code that implements the synchronization and
communication between the processors. In our methodology
and design flow, the first step is partitioning of an application
into concurrent tasks where the intertask communication
and synchronization is explicitly specified in each task. Such
partitioning, performed automatically by the PNgen tool
[19], allows each task or group of tasks to be compiled
separately by a standard C compiler in order to generate
an executable code for each processor in the platform. The
partitioning of an application into concurrent tasks requires
the use of a parallel model of computation in order to
functionally specify the application. In our case, PNgen

uses and generates such model, namely, a Kahn process
network (KPN), for a given application initially specified
as a sequential static affine nested loop C program. A KPN
generated by PNgen is a network of concurrent autonomous
processes that communicate data in a point-to-point fashion
over FIFO channels, using blocking read/write on empty/full
FIFOs as a synchronization mechanism. Moreover, regardless
of the functional behavior specified by processes in a KPN
generated by PNgen, always ESPAM takes each process
specification and generates a specific code for each process
where the structure of the code is the same for all processes
to be executed by programmable processors. This uniform
structure is explained by an example.

Consider the KPN shown in Figure 2(b). Three processes
(P1, P2, and P3) are connected through four FIFO channels
(CH1, CH2, CH3, and CH4). The structure of each process
is the same and consists of a CONTROL part, a READ part,
an EXECUTE part, and a WRITE part where the parts are
specific—see, for example, process P2 in Figure 3(a). The
same structure can be seen for process P1 in Figure 2(a)—
see lines 2 to 7. The difference between P2 and P1 is in
the specific code in each part. For example, the CONTROL
part of P2 has two for-loops whereas the CONTROL part
of P1 has only one for-loop. The READ part of P2 has two
read primitives and if conditions specifying when to execute
these primitives whereas the READ part of P1 has one read
primitive executed unconditionally.

The blocking read/write synchronization mechanism of
our KPNs is implemented by read/write synchronization
primitives. They are the same for each process and are
depicted in Figure 2(a)—see lines 8 to 21. Detailed expla-
nation of the primitives’ code can be found in [9]. The
primitives are automatically generated and inserted in the



8 EURASIP Journal on Embedded Systems

1 // process P2
2 void main() {
3 for(int i = 2; i <= N ; i + +)

4 for(int j = 1; j <=M + i; j + +) {

5 if(i− 2 == 0)
6 read(IP1, in 0, size);
7 if(i− 3 >= 0)
8 read(IP2, in 0, size);

9 execute(in 0, out 0);

10 if(−i + N − 1 >= 0)
11 write(OP1, out 0, size);
12 if(i−N == 0) {
13 write(OP2, out 0, size);

14 } // for j

15 } // main

CONTROL

READ

EXECUTE

WRITE

(a)

Read

IP1

IP2

M
U

X

Evaluation
logic read

Counters

in 0

Execute

HW IP
core

Control

Write

OP1

OP2

D
eM

U
X

Evaluation
logic write

Counters

out 0

(b)

Figure 3: Example of a HW module and its blocks’ structure.

program code by ESPAM in the places where a process has
to read/write data from/to a FIFO channel. For example,
process P1 in Figure 2(a) reads data from its input channel
via port IP1 (line 4). If data is not available, then the process
blocks on reading until data arrives. Then it performs a
computation on the data (line 5), and writes the result to
its output FIFO channel via port OP1 (line 6). If the FIFO
is full, then the process blocks on writing until there is room
available in the FIFO. Lines 4 to 6 are repeated several times.

3. IP CORE INTEGRATION WITH ESPAM

In the previous sections, we presented our methodology
for multiprocessor system design implemented in ESPAM.
It allows automated generation of homogeneous multipro-
cessor platforms, that is, the processing components are
only programmable processors. However, in many cases,
a homogeneous system may not meet the performance
requirements of an application. As an alternative, better per-
formance can be achieved by using systems where different
types of processing components execute different tasks. In
general, a dedicated IP core delivers better performance than
a processor which executes a software program for the same
function. This motivated us to extend the ESPAM tool to
support automatic generation of heterogeneous multipro-
cessor systems where both programmable processors and
dedicated HW IP cores are used as processing components.

In this section, we present in detail our approach and
techniques for automated IP core integration with ESPAM.
It is based on a HW module generation that consists of
a wrapper around a dedicated IP core. The basic idea in
our approach is presented in Section 3.1. It is followed by a
discussion on the type of the IPs supported by ESPAM, and
the minimum interfaces these IPs have to provide in order
to allow automated integration.. Then in Section 3.3, we
give details about the internal structure of the HW module

and the implementation of the wrapper. In Section 3.4,
we explain how a HW module is automatically generated
by ESPAM based on the KPN representation of the input
application.

3.1. HW module—basic idea and structure

As we explained earlier, in the multiprocessor platforms
we consider, the processors execute code implementing
KPN processes, and communicate data between each other
through FIFO channels mapped onto communication mem-
ories. Using communication controllers, the processors can
be connected either point-to-point or via a communication
component. We follow a similar approach to connect a
dedicated IP core to other IPs or programmable processors in
our platforms. We illustrate our approach with the example
depicted in Figure 2. We map the KPN in Figure 2(b) onto
the heterogeneous platform shown in Figure 2(c). Assume
that process P1 is executed by processor uP2, P3 is executed
by uP2, and the functionality of process P2 is implemented
as a dedicated (predefined) IP core. Based on this mapping
and the KPN topology, ESPAM automatically maps FIFO
channels to communication memories (CMs) following the
rule that a processing component only writes to its local
CM. For example, process P1 is mapped onto processing
component uP1 and P1 writes to FIFO channel CH1.
Therefore, CH1 is mapped onto the local CM of uP1—see
FIFO1 in Figure 2(c). In order to connect a dedicated HW
IP core to other processing components, ESPAM generates a
HW module (HM) that contains the IP core and a wrapper
around it. Such an HM is then connected to the system
using communication controllers (CCs) and communication
memories (CMs), that is, an HM writes directly to its own
local FIFOs and uses CC to read data from FIFOs located in
CMs of other processors. This is illustrated in Figure 2(c)—
see module HM that realizes process P2.



Hristo Nikolov et al. 9

As explained in Section 2.3, our KPNs are derived
automatically and the processes in our KPNs have always the
same structure. It reflects the KPN operational semantics,
that is, read-execute-write using blocking read/write syn-
chronization mechanism. Therefore, a HW module realizing
a process of our KPN has identical structure, shown in
Figure 2(d), consisting of READ, EXECUTE, and WRITE
blocks. A CONTROL block is added to capture the process
behavior, for example, the number of process firings, and to
synchronize the operation of the other three blocks.

The EXECUTE block of a HW module (HM) is actually a
dedicated HW IP core to be integrated. It is not generated by
ESPAM but it is taken from a library. The other blocks READ,
WRITE, and CONTROL constitute the wrapper around
the IP core. The wrapper is generated fully automatically
by ESPAM based on the specification of a process to be
implemented by the given HM. Each of the blocks in an
HM has a particular structure which we illustrate with the
example in Figure 3. Figure 3(a) shows the specification of
process P2 generated by ESPAM if P2 would be executed on
a programmable processor. We use this code to show the
relation with the structure of each block in the HW modules
generated by ESPAM, shown in Figure 3(b), if P2 is realized
by dedicated HW.

In Figure 3(a), the read part of the code is responsible
for getting data from proper FIFO channels at each firing
of process P2. This is done by the code lines 5–8 which
behave like a multiplexer, that is, the internal variable in 0
is initialized with data taken either from port IP1 or IP2.
Therefore, the read part of P2 corresponds to the multiplexer
MUX in the READ block of the HW module in Figure 3(b).
Selecting the proper channel at each firing is determined
by the if conditions at lines 5 and 7. These conditions are
realized by the EVALUATION LOGIC READ component of
block READ. The output of this component controls the
MUX component. To evaluate the if conditions at each firing,
the iterators of the for loops at lines 3 and 4 are used.
Therefore, these for loops are implemented by HW counters
in the HW module—see the COUNTERS component in
Figure 3(b).

The write part in Figure 3(a) is similar to the read part.
The only difference is that the write part is responsible for
writing the result to proper channels at each firing of P2. This
is done in code lines 10–13. This behavior is implemented
by the demultiplexer DeMUX component in Figure 3(b).
DeMUX is controlled by the EVALUATION LOGIC WRITE
component which implements the if conditions at lines 10
and 12. Again, to implement the for loops, ESPAM uses the
COUNTERS component. Although the counters correspond
to the control part of process P2, ESPAM implements them
in both the READ and WRITE blocks, that is, it duplicates
the for loops implementation in the HW module. This allows
the operation of blocks READ, EXECUTE, and WRITE to
overlap, that is, they can operate in pipeline which leads to
better performance of the HW module.

The execute part in Figure 3(a) represents the main
computation in P2 encapsulated in the function call at code
line 9. The behavior inside the function call is realized by the
dedicated HW IP core depicted in Figure 3(b). As explained

above, this IP core is not generated by ESPAM, but it is
provided by a designer or it is a predefined third party IP
core. In the HW module, the output of component MUX is
connected to the input of the IP core and the output of the IP
core to the input of component DeMUX. In our example, the
IP core has one input and one output. In general, the number
of inputs/outputs can be arbitrary. Therefore, every IP core
input is connected to one MUX and every IP core output is
connected to one DeMUX.

Notice that the loop bounds at lines 3-4 in Figure 3(a) are
parameterized. The CONTROL block in Figure 3(b) allows
the parameter values to be set/modified from outside the
HW module at run time or to be fixed at design time.
Another function of block CONTROL is to synchronize
the operation of the other blocks and to make them to
work in pipeline. Also, CONTROL implements the blocking
read/write synchronization mechanism. Details are given in
Section 3.3.

3.2. IP core types and interfaces

In this section, we describe the type of the IP cores that fit
in our HW module idea and structure discussed above. Also,
we define the minimum data and control interfaces these IPs
have to provide in order to allow automated integration in
MPSoC platforms designed with ESPAM.

(1) In our HW module, an IP core implements the
main computation of a KPN process which in the initial
specification is represented by a function call. Therefore, an
IP core has to behave like a function call as well. This means
that for each input data, read by the HW module, the IP core
is executed and produces output data after an arbitrary delay.

(2) In order to guarantee seamless integration within the
dataflow of our heterogeneous systems, an IP core must have
unidirectional data interfaces at the input and the output that
do not require random access to read and write data from/to
memory. Good examples of such IP cores are the multimedia
cores at http://www.cast-inc.com/cores/.

(3) To synchronize an IP core with the other blocks
in our HW module, the IP has to provide “Enable/Valid”
control interface. The “Enable” signal is a control input to
the IP core and is driven by the CONTROL block in the
HW module to enable the operation of the IP core when
input data is read from input FIFO channels. If input data
is not available, or there is no room to store the output of the
IP core to output FIFO channels, then “Enable” is used to
suspend the operation of the IP core. The “Valid” signal is a
control output signal from the IP and is monitored by block
CONTROL in order to ensure that only valid data is written
to output FIFO channels connected to the HW module.

3.3. IP core wrapper implementation

As explained in Section 3.1, a HW module generated by
our ESPAM tool contains a dedicated HW IP core and a
wrapper around it. In this section, we give details about the
structure and implementation of the IP Wrapper. We have
already explained and shown that the structure of our HW

http://www.cast-inc.com/cores/


10 EURASIP Journal on Embedded Systems

IP
3

IP
2

IP
1

IP
n

DATA

READ MUX

EXISTs

READs

CONTROLS

Evaluation
logic read

ITERATORS BOUNDS

Generic
counter

EN

DONE

IP In

EXIST

READ

DONE RD

IP core

ENABLE VALID

Control
unit

Parameters

PAR DT
PAR LD

Parameters

IP Out

FULL

WRITE

DONE WR

DATA

WRITE DeMUX

Generic
counter

FULLs

WRITEs

CONTROLS

Evaluation
logic write

ITERATORS BOUNDS

Generic
counter

EN

DONE

O
P

3
O

P
2

O
P

1
O

P
k

Figure 4: Detailed structure of the IP wrapper generated by ESPAM.

modules is the same regardless of the functional behavior
they implement. This allows us to identify and implement
the main building blocks discussed in Section 3.1 as a set
of parameterized components with clearly defined interfaces,
and by using these components to construct the IP Wrapper.
Therefore, we have developed a HW module library of
predefined parameterized components which ESPAM uses
to generate HW modules. The generation is done by
instantiating components from the library, connecting them,
and setting their parameters according to the specification
of processes in the input KPN. By making the IP wrapper
(HW module, resp.) clearly structured and modularized,
every component becomes more independent and loosely
coupled. Therefore, we are able to develop and optimize
each component separately which allows for efficient and
effective optimization resulting in better performance of the
generated systems. Below, we give more information about
each component of the IP wrapper, its interface signals and
its parameters.

The detailed structure of the IP wrapper is depicted in
Figure 4. It contains several input and output data ports
(IP1–IPn and OP1–OPk). The actual number is determined
by the KPN topology. Each port implements a basic FIFO
interface. It contains the minimum amount of signals that
are present in any existing FIFO component. For the input
ports, these are a DATA bus, EXIST, and READ signals. DATA
is a bus used to read data from a FIFO connected to a port.
EXIST is a signal indicating that a FIFO contains valid data
to read and READ is a signal that controls the read enable
of a FIFO. An output port implements a FIFO interface
consisting of a DATA bus, FULL, and WRITE signals. DATA

is a bus used to write data to an FIFO. FULL is a signal
indicating when a FIFO is full and WRITE is a signal that
controls the write enable of a FIFO. The IP wrapper has three
global parameters defining its interfaces: number of input
ports, number of output ports, and width of the data buses
of the ports.

The data buses of the input interfaces are connected to
the IP core inputs through multiplexers READ MUX. Recall
that we use one READ MUX component for every input of
an IP core. The READ MUX has two parameters: number
of input ports (#inputs) and data width. Notice that each
READ MUX port contains DATA bus, EXIST, and READ
signals. Similarly, the outputs of the IP core are connected
to the data buses of the output interfaces of the HW module
using WRITE DeMUX components, one component per IP
output. The parameters of component WRITE DeMUX are
number of output ports (#outputs), each containing DATA
bus, FULL, WRITE signals, and data width.

The CONTROL UNIT component, depicted in the
center of Figure 4, synchronizes the operation of the IP
wrapper components with the operation of the IP core.
CONTROL UNIT does not have parameters. Therefore, its
implementation and structure are exactly the same in any
HW module generated by ESPAM. CONTROL UNIT gen-
erates READ and WRITE strobes to the FIFO channels and
ENABLE signal to the IP core based on the EXIST and FULL
signals coming from the FIFO channels. The DONE RD and
DONE WR signals terminate the read/write actions. The
implementation of CONTROL UNIT is very simple, that is,
it implements only the three boolean equations described in
Figure 6.



Hristo Nikolov et al. 11

HomogeneousM-JPEG

VideoIn 11 K 11 K

DCT

4.1% 7.9%

135 K 50.8% 0.4 K 0.3%

Q 68 K 25.7% 68 K 50.3%

VLE 49 K 18.7% 49 K 39.5%

VideoOut 1.8 K 0.7% 1.8 K 2%

SLICEs FFs LUTs

W1

W2

W3

W4

W5

W6

221

240

208

274

269

236

190

192

147

173

173

157

371

371

361

412

390

351

Heterogeneous
18

16

14

12

10

8

6

4

2

0

M
ill

io
n

s
of

cy
cl

es

SOBEL DWT M-JPEG

2.3x 3.8x

1.9x

Homogeneous

Heterogeneous

(a) Performance numbers (b) M-JPEG tasks utilization (c) HW resource utilization

Figure 5: Experimental performance and synthesis results.

READ = EXIST and not(FULL) and not(DONE RD),

ENABLE = (not(DONE RD) and READ), or
(DONE RD and not(FULL) and not(DONE WR))

WRITE = VALID and not(FULL) and not(DONE WR).

Figure 6

The first equation shows the logic that enablesreading
from FIFO channels. When data to be read is available, all
the FIFOs where the result has to be stored are not full, and
the read actions are not completed, signal READ is set to 1
and reading is initiated. The second equation is the logic that
enables the operation of the IP core. It is enabled if the read
actions are not completed and there is data to read. When
the read actions are completed, the IP operation is enabled
if the corresponding output FIFO channels are not full and
the write actions are not completed. The third equation
shows the logic that enables writing to FIFO channels. When
the processed data is available at the output of the IP core
indicated by the VALID signal, all the FIFOs where the data
has to be stored are not full, and write actions are not
completed, signal WRITE is set to 1, and writing is initiated.

As explained in Section 3.1, for loops are implemented
as counters. Therefore, we have designed a parameterized
GENERIC COUNTER component where only by setting
parameters arbitrary nested for loops can be implemented.
The parameters define the number of counters (#counters)
and the size of each counter. GENERIC COUNTER has
interface called BOUNDS that allows the lower and upper
bounds of each counter to be set at run time. The GENERIC
COUNTER components are controlled by enable signals
(EN), that is, if a read or write action has been performed,

the corresponding counter advances. When all the counters
reach their upper bounds, this situation is indicated to
CONTROL UNIT by signals DONE RD and DONE WR.

The parameters of the components discussed so far
are so called structural parameters. They are set at design
time and used to determine the components structure.
However, processes in our KPNs may contain parameters
that determine at run time the behavior of the processes. For
example, the upper bounds of the for loops of process P2 in
Figure 3(a) are parameterized by parameters N and M. We
call such parameters behavioral parameters. These parame-
ters are managed in our HW module by the PARAMETERS
component. It provides an interface, PAR DT, and PAR LD,
for loading behavioral parameter values from outside of
the HW module at run time. PAR DT is a data bus to
transfer behavioral parameter values and PAR LD is the
write enable signal to store them in the PARAMETERS
component. Like most of the components in our HW
module, the PARAMETERS component itself has structural
parameters that define the number of behavioral parameters
(#parameters) and their default values.

The behavioral parameters in our KPNs are used to
determine for-loop bounds and to evaluate if conditions
that determine input/output ports selection as shown in
Figure 3(a). In our IP wrapper, this is implemented in the
two EVALUATION LOGIC components shown in Figure 4.
The values of the behavioral parameters are propagated from
the PARAMETERS component to these two components.
Also, the values of the loop iterators implemented as counters
in the GENERIC COUNTER components are propagated
through the ITERATORS buses. In the two EVALUATION
LOGIC components, the counter bounds are calculated and
propagated back to the GENERIC COUNTER components
at run time through the BOUNDS interface. Also, in the two
EVALUATION LOGIC components the selection conditions
are calculated to determine the values of signals CONTROLS.



12 EURASIP Journal on Embedded Systems

These signals control components READ MUX and WRITE
DeMUX that select from/to which FIFO channels data has
to be read/written. The structural parameters of the EVALU-
ATION LOGIC components are number of output control
signals (#control signals), number of counters (#counters),
and number of behavioral parameters (#parameters). We
would like to notice that the implementation of components
EVALUATION LOGIC depends not only on the values of
the structural parameters, but also on the specification of a
KPN process realized by a HW module. Therefore, ESPAM
synthesizes different EVALUATION LOGIC components
for each HW module in our heterogeneous platforms. In
contrast, the other components in any HW module are
predefined and ESPAM just instantiates them from the HW
module library and only assigns proper values to their
structural parameters.

3.4. Automated generation of HW modules

The presented components of our HW module, their
parameters and interfaces as well as the structure of the
HW module allow the generation of the HW module
to be automated in ESPAM. In this section, we explain
how ESPAM automatically generates a HW module based
on a KPN process specification. This is done in several
steps, namely, components instantiation, parameters setting,
and evaluation logic generation. For the sake of clarity,
we illustrate these steps by an example of generating the
HW module for process P2 in Figure 2(b). The process
specification is given in Figure 3(a). The generated HW
module is the module depicted in Figure 4 if the dashed
components and connections are not considered.

First, ESPAM instantiates all the components of the IP
wrapper and the IP core as follows. The IP wrapper requires
two input (IP1, IP2) and two output (OP1, OP2) ports.
This information is extracted from the KPN topology—see
process P2 in Figure 2(b). The IP core that implements the
main computation of process P2 in our example has one
input and one output port. Therefore, ESPAM instantiates
one READ MUX and one WRITE DeMUX components
and connects them to the IP core and to the input/output
ports of the HW module. Then ESPAM instantiates and
connects the remaining components of the IP wrapper as
shown in Figure 4. This is possible to be done automatically
because the number of the remaining components and their
connections do not change across different HW modules
and it is predefined as a parameterized template in ESPAM.
Second, ESPAM sets the values of the parameters of the
instantiated components as follows:

READ MUX—#inputs = 2 because process P2 has two
input ports;

WRITE DeMUX—#outputs = 2 because process P2 has
two outputs;

PARAMETERS—#parameters = 2 because process P2 has
two behavioral parameters N and M. The default values of N
and M are set as well by extracting this information from the
specification of process P2. This is possible because in our
KPNs a behavioral parameter is defined by min, max, and
default values;

BOUND LOW i <= 2;
BOUND HIGH i <= PAR N;
BOUND LOW j <= 1;
BOUND HIGH j <= PAR M + ITERATOR i

Figure 7

CONTROLS(0) <= (−iterator i + par N − 1) >= 0; - - OP1,
CONTROLS(1) <= (iterator i − par N) = 0; - - OP2

Figure 8

GENERIC COUNTER—#counters = 2 because the body
of process P2 contains two nested for-loops with iterators i
and j. The parameter size of each counter is set according to
the maximum value that each loop iterator can reach during
operation. In our example, size = max(N) for the counter
corresponding to loop iterator i. Similarly, size = max(M) +
max(N) for the counter corresponding to loop iterator j;

CONTROL UNIT—no parameters are set because, as we
explained in Section 3.3, this component is not parameter-
ized;

EVALUATION LOGIC—#control signals = 2 because of
the two input and two output ports of the HW module,
#counters = 2 because process P2 has two nested loops, and
#parameters = 2 because P2 has two behavioral parameters N
and M.

In our example, parameter data width of all components
is set to 32 bits.

Finally, as a last step of the automated generation of the
HW module, ESPAM generates the implementations of the
EVALUATION LOGIC components. The implementations
contain two parts, that is, logic to calculate the lower and
upper bounds of the counters and logic to calculate the values
of the control signals propagated to the READ MUX and
WRITE DeMUX components. According to the specification
of process P2 at lines 3-4 in Figure 3(a), the counter bounds
in both EVALUATION LOGIC components are implemented
by logic synthesized from VHDL code generated by ESPAM
as shown in Figure 7.

The read if conditions at code lines 5 and 7 and the
write if conditions at code lines 10 and 12 in Figure 3(a)
are also implemented by logic synthesized from VHDL code
generated by ESPAM. In Figure 8, we show the code of the
write if conditions in the EVALUATION LOGIC WRITE
component.

4. EXPERIMENTS AND RESULTS

In this section, we present some of the results we have
obtained by implementing and executing three applications,
namely, a Sobel edge detection, a discrete wavelet transform



Hristo Nikolov et al. 13

(DWT), and a motion JPEG (M-JPEG) encoder application,
onto homogeneous and heterogeneous multiprocessor sys-
tems using our ESPAM tool and the design flow presented
in Section 2.1. The main objective of this experiment is to
show the effectiveness of our approach for HW IP core
integration in terms of design time, achieved performance,
and HW resource utilization of the generated HW modules.
For prototyping purpose, we use an FPGA board with one
Xilinx VirtexII-6000 device.

4.1. Design time

Following our design flow, we started with the three applica-
tions (Sobel, DWT, and M-JPEG) given as sequential C pro-
grams and automatically derived the Application Specifica-
tions, that is, KPNs using the PNgen tool in 5 minutes. Details
about the derived KPNs are presented in [19]. For each
application, we wrote the system-level Platform and Mapping
Specifications by hand in XML format in 10 minutes. In
this experiment, each of the three homogeneous platforms
contains 5 MicroBlaze processors connected via crossbar
network. Having all three input specifications for each
application, our ESPAM tool generated and programmed a
homogeneous multiprocessor system at RTL level, which was
automatically imported to the Xilinx XPS tool for physical
implementation onto our prototyping FPGA. The overall
design and implementation time of each homogeneous
system was about an hour.

We have performed similar actions as described above in
order to generate three heterogeneous multiprocessor systems
using our design flow. We had to modify only the initial
system-level Platform and Mapping Specifications for each
application in order to replace some of the MicroBlaze
processors with dedicated HW IP cores. This took us less
than 5 minutes. For the Sobel application, we used 3
MicroBlaze processors and 2 dedicated IP cores. The IP cores
estimate the first derivative of an image intensity function.
For the DWT application, we used 1 MicroBlaze processor
and 4 dedicated IP cores. The IP cores are 2 low and
2 high-pass filters. For the M-JPEG application, we used
4 MicroBlaze processors and 1 discrete cosine transform
(DCT) IP core. Again, the overall design and implementation
time of each heterogeneous system was about an hour.

As explained above, in the heterogeneous systems we
used several dedicated HW IP cores. They were written in
synthesizable VHDL. For the Sobel and DWT applications,
the IP cores have a simple structure, that is, they implement
convolution-based operations. These IP cores have been
developed by 2 master students and added to the ESPAM
library in about one working day. For the M-JPEG applica-
tion, we used an IP core that performs a discrete cosine trans-
form (DCT) operation. We have downloaded this IP core
from the Xilinx website at http://www.xilinx.com/bvdocs/
appnotes/xapp 610.zip. In order to add this IP core to the
ESPAM library, we had to make small modification related to
the control (Enable/Valid) interface discussed in Section 3.2.
The DCT IP core provided by Xilinx has “Valid” signal but
it does not have “Enable” signal. We added this signal to the
IP core and the IP core to the library within 30 minutes.

4.2. Performance results

The performance numbers we have obtained for the imple-
mented multiprocessor systems are shown in Figure 5(a).
For each multiprocessor system, we measured the exact
number of clock cycles needed to process an image of
size 128 × 128 pixels. As one may expect, the numbers in
the figure show that the heterogeneous systems achieve better
performance. This is because the dedicated HW IP cores, we
use, work more efficiently than the MicroBlaze processors for
the same functionality. What is more important to discuss
here is the achieved speed-up, depicted in Figure 5(a) above
the bars of the heterogeneous systems, in order to show
the efficiency of our approach for HW module generation
and IP core integration. Consider the performance results
of the M-JPEG systems. The M-JPEG application consists of
5 tasks, namely, VideoIn, DCT, quantization (Q), variable
length encoding (VLE), and video out. The left part of
column HOMOGENEOUS in Figure 5(b) shows how many
thousands of clock cycles it takes for a MicroBlaze processor
to execute each task by processing one data token—an
image block of size 8 × 8 pixels. The numbers in the next
column show the same information in percentage of the
overall processing time utilized by each task. It can be seen
that the DCT is the bottleneck of the system taking more
than 50% of the whole processing time for one block and
consequently, for the whole image. These 50% mean that if
the DCT is substituted with more efficient implementation,
theoretically the overall performance of the system can be
increased at most 2 times. The column HETEROGENEOUS
in Figure 5(b) shows the clock cycles and the percentage of
each task performed by the heterogeneous M-JPEG system
where the DCT is implemented by a very fast dedicated HW
IP core and integrated using our HW module generation
approach. In this system, the DCT takes only 0.3% of the
whole processing time. In this case, Figure 5(a) shows that
the overall speed-up compared to the homogeneous system
is 1.9x which is close to the theoretical maximum 2x for the
heterogeneous system where only the DCT is a dedicated IP
core. This clearly shows the efficiency of our approach for IP
core integration by generating HW modules.

4.3. Synthesis results

Recall that a HW module generated by our tool ESPAM
consists of an IP core and a wrapper around it where the IP
core is given and only the wrapper is generated by ESPAM.
Therefore, we present only the HW resource utilization of
our generated wrappers in order to show how efficient our
wrappers are in terms of utilized HW. In Figure 5(c), we
present the resource utilization of the IP wrappers of six IP
cores that we used in our experiments. Each row W1–W6 in
Figure 5(c) corresponds to an IP wrapper. The utilized FPGA
resources are grouped into slices that contain flip-flops and
4-input look up tables—see columns 2, 3, and 4, respectively.
The numbers show low HW resource utilization which on
average is 241 slices. Moreover, the number of resources
utilized by a wrapper does not depend on the size of the IP
core it integrates, that is, a larger IP core does not require a

http://www.xilinx.com/bvdocs/appnotes/xapp_610.zip
http://www.xilinx.com/bvdocs/appnotes/xapp_610.zip


14 EURASIP Journal on Embedded Systems

larger wrapper. For example, wrapper W3 of the DCT core
utilizes only 208 slices, whereas the DCT IP core itself utilizes
1369 slices. Wrapper W2 of the IP core that estimates the
first derivative in Sobel utilizes 240 slices, whereas the IP core
itself utilizes 424 slices.

In general, the HW complexity of our wrappers is
determined mainly by the number of MUX and DeMUX
components, the number of counters implementing for
loops of a KPN process, and the number of behavioral
parameters of a KPN process. The three applications we
used in our experiment process images. We specified the
applications with two nested for loops that iterate through
an image and we used two behavioral parameters as loop
bounds, that is, image, width, and height. Since the number
of for loops and behavioral parameters is the same for all
wrappers in our experiment, the difference in the resource
utilization of our wrappers is caused by the different
input/output ports of the wrappers and the IP cores they
integrate.

5. CONCLUSIONS

In this paper, we presented our method and techniques
implemented in ESPAM for automated integration of ded-
icated hardwired IP cores into heterogeneous multiprocessor
systems. The integration is based on a HW module gen-
eration that consists of predefined dedicated IP core and a
wrapper around it. To allow automated IP core integration,
our approach requires these IP cores to provide simple data
and control interfaces. The proposed method for IP core
integration was applied on several real-life applications. The
reported results show that the integration is efficient in terms
of performance and HW resource utilization.

ACKNOWLEDGMENT

This work was supported by the Dutch Technology Foun-
dation (PROGRESS/STW) under the Artemisia project
(LES.6389).

REFERENCES

[1] IBM PowerPC Wite Paper, http://www-01.ibm.com/chips/
techlib/techlib.nsf/products/PowerPC 405 Embedded Cores.

[2] The Xilinx’s Microblaze Processor, http://www.xilinx.com/
products/design resources/proc central/microblaze arc.htm.

[3] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC
to ASIP: the next design discontinuity,” in Proceedings of
IEEE International Conference on Computer Design: VLSI in
Computers and Processors (ICCD ’02), pp. 84–90, Freiburg,
Germany, September 2002.

[4] Tensilica, “Xtensa configurable processors,” http://www
.tensilica.com/products/xtensa-overview.htm.

[5] Intel Corp., “Intel IXP1200 Network Processor, Product
Datasheet,” December 2001.

[6] NXP, http://www.nxp.com/.
[7] M. Gries and K. Keutzer, Building ASIPs: The Mescal Method-

ology, Springer, New York, NY, USA, 2005.
[8] P. Ienne and R. Leupers, Customizable Embedded Processors:

Design Technologies and Applications (Systems on Silicon),
Morgan Kaufmann, San Francisco, Calif, USA, 2006.

[9] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic
and automated multiprocessor systen design, programming,
and implementation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 3, pp.
542–555, 2008.

[10] G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Proceedings of the IFIP Congress on Information
Processing, pp. 471–475, North-Holland, Stockholm, Sweden,
August 1974.

[11] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E.
Deprettere, “System design using Kahn process networks:
the Compaan/Laura approach,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’04), vol. 1, pp. 340–345, Paris, France, February 2004.

[12] E. A. de Kock, G. Essink, W. J. M. Smits, et al., “YAPI: appli-
cation modeling for signal processing systems,” in Proceedings
of the 37th Design Automation Conference (DAC ’00), pp. 402–
405, Los Angeles, Calif, USA, June 2000.

[13] A. Nieuwland, J. Kang, O. P. Gangwal, et al., C-HEAP:
A Heterogeneous Multi-processor Architecture Template and
Scalable and Flexible Protocol for the Design of Embedded Signal
Processing Systems, Kluwer Academic Publishers, Norwell,
Mass, USA, 2002.

[14] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic
approach to exploring embedded system architectures at
multiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–112, 2006.

[15] E. A. de Kock, “Multiprocessor mapping of process networks:
a JPEG decoding case study,” in Proceedings of the 15th
International Symposium on System Synthesis (ISSS ’02), pp.
68–73, Kyoto, Japan, October 2002.

[16] K. Goossens, J. Dielissen, J. van Meerbergen, et al., “Guaran-
teeing the quality of services in networks on chip,” in Networks
on Chip, pp. 61–82, Kluwer Academic Publishers, Hingham,
Mass, USA, 2003.

[17] B. K. Dwivedi, A. Kumar, and M. Balakrishnan, “Automatic
synthesis of system on chip multiprocessor architectures for
process networks,” in Proceedings of the 2nd International
Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS ’04), pp. 60–65, Stockholm, Sweden,
September 2004.

[18] G. Martin, “Overview of the MPSoC design challenge,”
in Proceedings of the 43rd Design Automation Conference
(DAC ’06), pp. 274–279, San Francisco, Calif, USA, July 2006.

[19] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for
improved derivation of process networks,” EURASIP Journal
on Embedded Systems, vol. 2007, Article ID 75947, 13 pages,
2007.

[20] “Espam and PNgen download link,” http://daedalus.liacs.nl/
Site/Download.html.

[21] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan:
deriving process networks from matlab for embedded signal
processing architectures,” in Proceedings of the 8th Interna-
tional Workshop on Hardware/Software Codesign (CODES ’00),
pp. 13–17, San Diego, Calif, USA, May 2000.

[22] T. Stefanov and E. Deprettere, “Deriving process net-
works from weakly dynamic applications in system-level
design,” in Proceedings of the 1st International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’03), pp. 90–96, Newport Beach, Calif, USA,
October 2003.

[23] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine
nested-loop programs to process networks,” in Proceedings of

http://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC 405 Embedded Cores
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC 405 Embedded Cores
http://www.xilinx.com/products/design resources/proc central/microblaze arc.htm
http://www.xilinx.com/products/design resources/proc central/microblaze arc.htm
http://www.tensilica.com/products/xtensa-overview.htm
http://www.tensilica.com/products/xtensa-overview.htm
http://www.nxp.com/
http://daedalus.liacs.nl/Site/Download.html
http://daedalus.liacs.nl/Site/Download.html


Hristo Nikolov et al. 15

the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES ’04), pp. 220–229,
Washington, DC, USA, September 2004.

[24] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere,
“Laura: leiden architecture research and exploration tool,”
in Proceedings of the 13th International Conference on Field
Programmable Logic and Applications (FPL ’03), pp. 911–920,
Lisbon, Portugal, September 2003.

[25] P. Feautrier, “Automatic parallelization in the polytope
model,” in The Data Parallel Programming Model, vol. 1132
of Lecture Notes in Computer Science, pp. 79–103, Springer,
London, UK, 1996.

[26] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S.
Malik, and D. I. August, “The liberty simulation environment:
a deliberate approach to high-level system modeling,” ACM
Transactions on Computer Systems, vol. 24, no. 3, pp. 211–249,
2006.

[27] F. Doucet, S. Shukla, M. Otsuka, and R. Gupta, “BALBOA:
a component-based design environment for system models,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 12, pp. 1597–1612, 2003.

[28] D. A. Mathaikutty and S. K. Shukla, “MCF: a metamod-
eling based visual component composition framework,” in
Advances in Design and Specification Languages for Embedded
Systems, pp. 319–337, Springer, New York, NY, USA, 2007.

[29] E. A. Lee, J. Liu, X. Liu, et al., “Ptolemy II: heterogeneous
concurrent modeling and design in java,” Tech. Rep. UCB/ERL
M99/40, University of California, Berkeley, Calif, USA, 1999.

[30] H. D. Patel, S. K. Shukla, and R. A. Bergamaschi, “Hetero-
geneous behavioral hierarchy extensions for SystemC,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 4, pp. 765–780, 2007.

[31] Celoxica, http://www.celoxica.com/.

[32] J. Zhu, R. Doemer, and D. D. Gajski, “Syntax and semantics
of the specC language,” in Proceedings of the 7th Workshop
on Synthesis and System Integration of Mixed Technologies
(SASIMI ’97), p. 8, Osaka, Japan, December 1997.

[33] C. Haubelt, J. Falk, J. Keinert, et al., “A systemC-based design
methodology for digital signal processing systems,” EURASIP
Journal on Embedded Systems, vol. 2007, Article ID 47580, 22
pages, 2007.

[34] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and
simulation of model-based designs in systemC,” in Proceedings
of the International Forum on Specification & Design Languages
(FDL ’06), pp. 129–134, Darmstadt, Germany, September
2006.

[35] A. A. Jerraya, A. Bouchhima, and F. Pétrot, “Program-
ming models and HW-SW interfaces abstraction for multi-
processor SoC,” in Proceedings of the 43rd Design Automation
Conference (DAC ’06), pp. 280–285, San Francisco, Calif, USA,
July 2006.

[36] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya,
“Automatic generation of application-specific architectures for
heterogeneous multiprocessor system-on-chip,” in Proceedings
of the 38th Design Automation Conference (DAC ’01), pp. 518–
523, Las Vegas, Nev, USA, June 2001.

[37] P. G. Paulin, C. Pilkington, M. Langevin, et al., “Parallel
programming models for a multiprocessor SoC platform
applied to networking and multimedia,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 7, pp.
667–679, 2006.

[38] VSIA, http://www.vsi.org/.

[39] OCP, http://www.ocpip.org/.

[40] SPIRIT, www.spiritconsortium.org/.

[41] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G.
Essink, “Design and programming of embedded multiproces-
sors: an interface-centric approach,” in Proceedings of the 2nd
International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS ’04), pp. 206–217, Stockholm,
Sweden, September 2004.

http://www.celoxica.com/
http://www.vsi.org/
http://www.ocpip.org/

	Introduction
	Paper contributions
	Scope of work
	Applications
	FIFO-based integration of IP cores
	Multiprocessor platforms
	Research and tools
	Tools inputs

	Related work

	Preliminaries
	ESPAM design flow
	Multiprocessor platforms
	Automated programming

	IP core integration with ESPAM
	HW module---basic idea and structure
	IP core types and interfaces
	IP core wrapper implementation
	Automated generation of HW modules

	Experiments and Results
	Design time
	Performance results
	Synthesis results

	Conclusions
	ACKNOWLEDGMENT
	References

