
 
1Abstract—The following paper discusses the structure and 

semantics of an open-source high-level embedded system 

design framework called DAEDALUS. It consists of multiple 

tools that help making the transition between the electronic 

system level (ESL) to register transfer level (RTL) description 

of streaming data multiprocessor systems. Application, 

platform, and mapping specifications are thoroughly discussed.  

 
 Index Terms—Electronic system level; Multiprocessor 

embedded systems; Polyhedral process networks; Design space 

exploration. 

I. INTRODUCTION 

Developing an embedded system has always been a 

challenging task due to the fact that hardware and software 

are being involved in the process and both depend on each 

other. An improper hardware design would reflect 

negatively on the software and vice versa. That is why new 

methods have emerged in the field of embedded systems 

where both hardware and software are being automatically 

generated from a high-level system description. Increasing 

the level of abstraction helps fighting the rapid complexity 

growth that is connected with that of the design productivity 

[1]. High levels of abstraction are also used in modelling, 

simulation and verification that are inseparable part of the 

entire production process. However, automation may 

become a challenging task itself when the system 

abstraction is not well defined, or when system components 

at specific level are not implemented, or when system 

design languages do not fit in particular application, etc. To 

present visually the relationship between different design 

methodologies and different levels of abstraction a so-called 

Y-Chart is widely used in the embedded systems 

development. This chart is proposed by Gajski [2]. It 

presents modelling of a design, no matter how complicated 

it is, in three basic ways (hence the three arcs that resemble 

the letter Y from the Latin alphabet) – behaviour, structure 

and physical design (Fig. 1). The term “behaviour” is also 

referred to as functional model or specification. It describes 

the system as a black box whose inputs are known in 

advance and its outputs respond in a specific way. As the 

input stimuli change over time, the outputs respond in a 

correlated manner. The inner mechanisms that make the 
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outputs change are not described at all. Those mechanisms 

are shown on the structure axis that is sometimes referred to 

as a block diagram or a netlist. It must contain separate 

blocks that are connected to each other in such a way that 

the whole could perform a certain task. What is missing so 

far are parameters that describe the components – size, 

position, ports, connections, etc. In a real world, this would 

mean the layout of a silicon chip or a printed circuit board. 

To further expand the Y-Chart, each axis contains different 

levels of abstraction of the selected design that are shown as 

circles around the center of the chart. In most cases, up to 

four levels are used: 

- Circuit level 

- Logic level 

- Processor level 

- System levels. 

 
Fig. 1.  The Gajski Y-Chart. 

Those names are derived from the components that are 

automatically generated at the end of the respective level. 

Circuit level uses basic blocks such as transistors, resistors, 

capacitors, diodes and so on. Combined together they make 

up a circuit. In digital systems, circuits that implement basic 

logic functions (such as AND, OR, XOR, NOR, etc) are 

called gates and they are the main building blocks of the 

logic level. Complex blocks may group together to form 

registers, ALUs, multipliers and other functional and 

memory elements. This level is also referred to as Register 

Transfer Level, or RTL. The elements from the RTL 

combine to form processing elements and state machines 

such as standard processors, memory controllers, arbiters, 

bridges, and interfaces. The system level uses processors, 

memories, buses, and other high-level components as main 
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building blocks. They are produced as a result of the design 

at the RTL. The abstraction at this point is so high, that the 

developers do not need to know any low-level details such 

as how are the gates connected, or how are the registers 

grouped in files. The entire thought is focused on what 

should the system do, given a specific input, and what 

should the response be in that specific case. This level is 

also referred to as Electronic System Level, or ESL. 

II. THE DAEDALUS FRAMEWORK 

Nowadays many development environments for ESL 

synthesis exist. Some of them are freeware, others are 

commercial and require paid license. Industrial giants such 

as Mentor Graphics, Cadence and Synopsys provide ESL 

tools. An open-source alternative is the Daedalus design 

flow (http://daedalus.liacs.nl) that originates from the 

Leiden Institute for Advanced Computer Science (LIACS) 

at Leiden University, The Netherlands. The main tools 

involved in the synthesis are shown in Fig. 2. Daedalus fills 

the so-called “implementation gap” in system-level design – 

it bridges the ESL and RTL levels by providing a tool called 

ESPAM. Other manufacturers either have ESL frameworks, 

or RTL frameworks, but none have a framework that 

combines both in a single tool flow. Daedalus is suited for 

designs that require streaming data processing and are 

implemented on multi-processor system-on-chip (MPSoC). 

Certain rules have to be followed, so that the C program is 

compliant with Daedalus. A list of those rules is given 

section V. Designs are easily prototyped on an FPGA and 

verified. SystemC timed simulations are also available, as 

we will see later in this paper. System design begins with 

functional description of the system. Currently the standard 

ANSI C is supported but the front-end could be modified to 

support any other specification language (SystemC, SpecC, 

etc). The C language is unchanged, i.e. no modifications to 

the C syntax are needed. Certain coding style rules have to 

be respected. The program is a sequential one at this stage 

(which is easier for the developer). Next, an ESL 

specification of the MPSoC is automatically derived from 

the C program. This specification is divided into three XML 

files: application, platform and mapping. 

 
Fig. 2.  Daedalus Framework for high-level system synthesis. 

Application specification – contains a parallel equivalent 

of the sequential C program. The application is presented as 

a set of tasks that exchange data between each other. The 

model of computation being used is the polyhedral process 

network or PPN, originally proposed at Leiden University. 

In it, tasks are concurrent and transfer data through FIFO 

channels. 

Platform specification – describes the topology of the 

multiprocessor system as a set of processing elements (PE), 

buses and switches. Memories are also used for the 

application code and the FIFO buffers. 

Mapping specification – describes the link between each 

application task and each processing element. Simply put, 

the file tells the system which code is executed on which 

processor. 

The sequential C program must be written as a 

parameterized static affine nested loop program (SANLP). 

This is the input expected by the parallelizing tool called 

PNgen. If not used, the user must write the application 

specification by hand in XML. 

The platform and mapping specification are derived at 

ESL by a tool called SESAME that can optimize the system 

for a specific parameter (currently time, cost and power are 

supported). The optimization process is called design space 

exploration, or DSE. The user could skip this tool also, in 

that case an Eclipse plug-in has been developed that loads a 

GUI editor for mapping and platform, and those 

specifications could be done by hand (or semi-

automatically). SESAME uses a component library that 

separates entities at two levels of abstraction - high-level for 

ESL synthesis and modeling of multiprocessor systems, and 

low-level RTL models to make a transition between the ESL 

and the RTL designs. As input the SESAME accepts the 

XML description of the application. When all of the XML 

files are ready, they are passed to a tool called ESPAM that 

automatically generates, in several steps, an RTL 

specification that includes hardware and software. The RTL 

specification is then fed as an input to a commercial tool 

that will carry on with the development. Currently the 

supported IDE is Xilinx (XPS, XSDK and Vivado). The 

derived files are actually a VHDL description of the MPSoC 

and C/C++ firmware for the microprocessors. The VHDL is 

divided in three parts: 

- platform topology – a netlist of the MPSoC describing 

in greater detail the connections between the components; 

- hardware descriptions of IP cores – predefined or 

custom intellectual property (IP) cores such as processors, 

memories, buses, etc.; 

- custom IP cores – auxiliary cores needed as glue logic 

between the components in the system. 

The C/C++ firmware is a low-level representation of the 

ESL application specification. It contains code for the 

functional behavior, as well as synchronization of the 

communication between the PE. The C/C++ source files are 

input to a common cross compiler, currently GCC ported for 

Xilinx's Microblaze microprocessor. 

An important feature of the Daedalus framework is that 

the mapping of FIFO channels to memories is not part of the 

mapping specification. A FIFO channel X is always mapped 

to a local memory of processing component Y, if the 

process that writes to X is mapped on processing component 

Y. Following this rule, ESPAM explicitly derives the 

mapping of FIFO channels to memories. 
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III. HISTORY OF THE DAEDALUS FRAMEWORK 

The origin of the Daedalus framework dates back to the 

year 2004 when work on key features has started. Two 

university professors and a PhD student were involved – Ed 

Deprettere, Todor Stefanov and Hristo Nikolov. All of them 

worked at Leiden University, more specifically the 

computer science institute – LIACS. The project is actually 

a spin off from the commercial tool Compaan. An open-

source back-end was added to it, namely ESPAM. To make 

the entire project open-source, the Compaan was replaced 

with PNgen. Compaan continues to be a closed source 

alternative and is used by CompaanDesign BV 

(https://www.compaandesign.com), founded by Bart 

Kienhuis and Ed Deprettere. The PNgen was developed in 

2005-2006 by Sven Verdoolaege, Todor Stefanov and 

Hristo Nikolov, and the year 2006 may be considered as the 

birth year of Daedalus. In the period 2007–2008 along with 

help from the University of Amsterdam, the SESAME tool 

had been integrated. Thusly the first full version of the 

framework was presented in 2008 at the 45th ACM/IEEE 

Int. Design Automation Conference (DAC'08), Anaheim, 

USA. To help proliferate the new software, in 2009 the 

Daedalus foundation was created by Todor Stefanov, Andy 

Pimentel and Ed Deprettere. In the beginning of 2010, 

Todor Stefanov and Ed Deprettere from Leiden University 

and Angel Popov, Marin Marinov and other colleagues from 

TU Sofia founded the DAEDALUS research and education 

laboratory, a joint laboratory between LIACS, Leiden 

University and the Department of Electronics, Faculty of 

Electronic Engineering and Technology, Technical 

University of Sofia, Bulgaria. 

IV. THE POLYHEDRAL PROCESS NETWORK MODEL OF 

COMPUTATION 

An integral part of the Daedalus tool flow is the 

polyhedral process network. As mentioned before, 

streaming data applications are the target of the current 

framework. Examples of such uses are in the multimedia, 

imaging, and signal processing. A polyhedral process 

network (PPN) is a network of parallel executing tasks that 

communicate over bounded (restricted in size) FIFO buffers 

[3]–[5]. Each channel serves streams of data tokens. There 

are two types of tasks – a producer and a consumer. For 

each FIFO there is a single producer and a single consumer 

of data. Multiple producers cannot communicate over a 

single channel and the same goes for the consumers. The 

synchronization of the communication is done with a 

blocking mechanism. If a FIFO buffer is empty, or in other 

words – no data tokens are stored in it, a read on this FIFO 

will stall or block the reader until a producer writes some 

data in it. If a FIFO is full, or in other words – all the 

registers contain data, a write to this FIFO will make the 

writer to stall or block until a consumer reads some data 

from it. Reading from a FIFO is destructive which means 

that data is removed from the FIFO once it has been read. 

Reading two times the same value is not possible. At any 

given clock cycle, a process is either performing 

calculations or is blocked on some of its channels. A 

process may exchange data only on one channel at a time. If 

a process is blocked on some of its channels, it cannot 

access other channels that are not empty.  

An example PPN is shown in Fig. 3. It contains three 

processes (tasks) that communicate through four FIFO 

channels. For each process, there is a single microprocessor 

implemented on the FPGA, hence the multiple main( ) 

functions. Read and write primitives have the same 

implementation on all cores, but each core has a library in 

its local memory that contains copies of the read( ) and 

write( ) functions. The PPN is a derivative of the more 

general Kahn process network (KPN). PPN processes go 

through three phases, namely read, execute, and write. The 

name polyhedral stems from the behavior of the process in a 

PPN and it resembles parametrized polyhedral descriptions 

using the polytope model. Formal descriptions are expressed 

in the following form 

 ( ) { },dD p x Z A x B p b= Î ´ ³ ´ +  (1) 

where D(p) is a parametrized polytope affinely depending 

on parameter vector p, x is a variable argument from a linear 

equation, Z is a union of sets of integral solutions to systems 

of affine inequalities, d is a number corresponding to the 

number of dimensions used, A and B are static parameters 

in a linear equation, and b is an Y-axis intercept parameter 

from a linear equation. If we look at process P2 in Fig. 3, 

and by obeying certain rules, called the Daedalus rules for 

SANLP programs (shown in Section V), every function 

must be enclosed in a for-statement, and by using a few 

transformations including dependence analysis (to output a 

Static Single Assignment Codes, SSAC), linearization (to 

map FIFO buffers to memory with linearly incremental 

addresses), and FIFO size calculation (by simulation of the 

program), the number of iterations of the code at line 18 can 

be found with the expression that describes a two-

dimensional polytope 

 ( ) ( ){ }2
9 , , 2 1 .D N M i j Z i N j M i= Î £ £ £ £ +  (2) 

The same way, iterations for code line 8 can be calculated 

using 

 ( ) ( ){ }2
8 , , 3 1 .D N M i j Z i N j M i= Î Ú £ £ £ £ +  (3) 

If we combine all polytopes that describe the process 

together, we will accurately capture the behaviour of that 

process. Because all processes are concurrent and their 

communication is explicit, this makes a very good fit 

between PPNs and multi-processor systems. The advantages 

of PPN models of computation for MPSoC can be 

summarized as: 

- design-time analysable – tasks are described as 

polytopes (or more specifically as polyhedrons) and FIFO 

sizes can be calculated in advance; 

- algebraic transformations can be performed – using 

mathematical transformations PPNs can be optimized to 

fit with the processing power of an MPSoC; 
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- determinism – scheduling of application processes is 

not crucial and many mappings may exist of one and the 

same hardware which allows for different types of 

optimizations; 

- distributed control – no global scheduler is needed, 

scheduling can be done locally with a real-time operating 

system, or by simply using interrupts if no OS is present; 

- distributed memory – no shared memories are being 

used, thusly avoiding race conditions and inter-processor 

competition; 

- simple synchronization – the process network 

synchronizes itself due to the blocking read/write 

mechanism. 

 
Fig. 3.  An example of a polyhedral process network and firmware for 

process P1. 

V. THE PNGEN TOOL: PERFORMING AUTOMATIC 

APPLICATION PARALLELIZATION 

As mentioned in the previous sections, the first step in the 

ESL synthesis starts with automatic transformation of a 

sequential program in a parallel description. The tool that 

does this processing is called PNgen and is part of the 

Daedalus tool flow. The input is a sequential program 

written in C that complies with static affine nested loop 

rules. To call a program a static affine nested loop program 

(SANLP), one must write the program in such that it 

contains if-statements and function calls enclosed in one or 

more for-loops. Some rules have to be obeyed: 

- loop increments or decrements must be constant; 

- loop boundaries must be affine expressions of the 

enclosing loop iterators, static parameters or constants; 

- if statements must have affine conditions of the loop 

iterators, static parameters or constants; 

- static parameters' values may not change during run 

time; 

- function calls must exchange data between each other 

in an explicit manner, i.e. using only scalar variables, 

single array elements, and structures (without pointers to 

other objects); 

- array elements must be indexed with affine expressions 

of the enclosing loop iterators, static parameters or 

constants. 

A program that conforms to those standards is given 

below and is written in the C programming language: 
for(int i = 0; i < N; i++){ 
 b[i] = function_1( ); 
} 
 

for(int i = 0; i < N; i++){ 
 if(i > 0){ tmp = b[i - 1]; } 
 else{ tmp = b[i]; } 
 function_2(b[i], tmp, &c[i]); 
} 

The above-mentioned restrictions allow that the program 

be represented with the polytope model that uses number 

sets and integral vectors defined by linear equations and 

inequations, existential quantification, and the union 

operation. The set of iterator vectors for which a function 

call is executed is an integer set that is called iteration 

domain. The inequality corresponding to this parameter 

depends on the lower and upper bounds of the for-loop that 

encloses the function call of interest. For example, the 

iteration domain of function_1 is {i, | 0 ≤ i ≤ N – 1}. All the 

iteration domains of a program form the basis of the PPN 

model because each function represents a process. The code 

given above has two processes that correspond to 

function_1 and function_2 (shown as ellipses on the 

graphical representation). FIFO channels are derived from 

the vector (arrays) or scalar (integers, floating point 

numbers, etc) accesses by each function call. All of the left-

hand side function parameters are considered to be write 

accesses and must be preceded by the “const” type specifier. 

The rest parameters on the right-hand side are read accesses 

and must be “non-const” variables. FIFO channels can be 

derived using standard array data-flow analysis. This done 

in the following way: for each read operation by a function 

call, the respective source of the data has to be found, or in 

other words – we must find the corresponding function that 

wrote this data. The answer to this question could be given 

with the help of parametric integer programming (PIP), 

where the lexicographical maximum of the write (or read) 

source operations in terms of the iterators of the “sink” read 

operation. The PIP operations are performed a number of 

times depending on the nesting level of the loops. To 

construct the PPN shown in Fig. 4, we must first note that 

the first read access in function_2 has read data written by 

function_1. This results in the FIFO channel represented 

with an arrow and named “b”. Data flows from iteration i_w 

of function_1 to i_t of function_2 and can be described as 

 ( ){ }1 2 , 0 1 .F F w r r w rD i i i i i N® = Ú = £ £ -  (4) 

The second read access of function_2 will derive a so-

called self-loop channel (shown as b_1 in the figure) 

because the data has already been read by the same function 

call after it was written. The temporary variable tmp is 

eliminated for this assumption. The self-loop channel is 

described as 
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Fig. 4.  A graphical representation of a simple SANLP in a PPN. 

A union of integer relations could be derived 

 ( ) 1 2
1 , ,n nm

j w rj D i i Z xZU = Î  (6) 

where n1 and n2 are the number of loops enclosing the 

write/read and read operations. FIFO channels size have to 

be calculated in such a way that no deadlocks could occur. 

The size has to be minimal to save hardware/software 

resource. The problem could be solved by first computing a 

deadlock-free schedule. The sizes of each channel can then 

be calculated individually. This schedule is temporary and 

not present in the final implementation, its sole purpose is to 

help with the calculations. The PPN can self-schedule 

themselves, as mentioned in the previous sections. The 

intermediate schedule is not guaranteed to be optimal. 

However, the calculations prove that such a schedule exists 

for the given buffer sizes. A greedy algorithm is used for the 

calculations.  The basic idea is to place all iteration domains 

in a common iteration space at an offset that is computed by 

the scheduling algorithm. The execution order in this 

common iteration space is the lexicographical order. A 

minimal dependence distance vector is computed for any 

pair of connected processes in the application. This vector is 

actually the difference between a read and the 

corresponding write operation. All process pairs are greedily 

combined, in such a way that all distance vectors are 

positive in lexicographical manner. The end result of this 

operation ensures that a data element is first written, then 

read. A loop fusion is also done on the SANLP. When the 

schedule is complete, all FIFO channels could be considered 

as self-loops of the common iteration space. For this 

schedule, the minimum channel sizes can be calculated. For 

each read iteration R(i) that is executed before a given read 

operation i a subtraction is done from the number of write 

operations W(i) preceding the read operation. Therefore, the 

number of data elements at operation i, that depends on the 

for loop iteration counter, can be expressed as 

 ( ) ( ) ,i W i R i= -  (7) 

where W is the write access and R is the read access of that 

specific iteration. This computation can be done by the 

readily available Barvinok library. The Barvinok library 

efficiently computes the number of integer points in a 

parametric polytope. The output is a polynomial of the read 

iterators and the parameters. The channel size is the 

maximum of this output over all read operations 

 ( ) ( )( )max .W i R i-  (8) 

This maximum is calculated with the help of the 

Bernstein expansion that obtains a parametric upper bound. 

VI. THE ESPAM TOOL: AUTOMATED SYSTEM-LEVEL 

SYNTHESIS 

The tool from the Daedalus design flow that is 

responsible for automated system-level hardware and 

software synthesis is called ESPAM (Embedded System-

level Platform Synthesis and Application Mapping). It fills 

the so-called “implementation gap” between the ESL and 

RTL. A lot of tools exist on those levels but only few can 

make such a transition in the abstraction. As mentioned 

before, the input files for ESPAM are application, platform, 

and mapping. 

The platform specification file consists of three parts - 

processing components, communication components and 

links. There are two ways to create the platform – either edit 

the platform by hand, using a GUI editor, or use an 

automated framework, called SESAME [6], to generate it by 

only giving optimization parameters, e.g. optimize for price, 

performance, or consumed energy. SESAME also decides 

the mapping strategy between the abstract description and 

the platform. An example platform is shown in Fig. 5. Each 

link connects a processing component to a communication 

component. Every component has a name and parameters. 

There are no memory controllers instantiated. ESPAM will 

automatically handle memories during the synthesis by 

placing either hardware FIFO buffers implemented on the 

FPGA, or by placing software FIFOs that are mapped to 

special communication memories (again implemented on 

the FPGA). The performance of the memory controllers 

depends on the RTL library currently being used and is 

subject to change between revisions. However, most of the 

memory controllers are as fast as the microprocessor, with 

frequencies of up to 500 MHz on a Xillinx XUPV5 

development board. This is done for the sole purpose of 

simplification of the design at high level. To be able to 

generate such a file, the developer needs a library of 

parametrized components. Such components include 7 types 

of devices: processing devices, memory, memory 

controllers, communication components (crossbar switches 

that connect separate processing elements together), 

communication controllers (modules that implement the 

features of a FIFO), peripheral components and links. The 

processing components, or processing elements (PE), 

implement the behaviour of the MPSoC by executing code 

from the process network. The user may choose between 

programmable processors implementing a certain instruction 

set and non-programmable dedicated IP cores. Many 

parameters exist for their configuration such type, number 

of I/O ports, memory size, etc. Memory models describe 

either local program and data memories of each processor, 

or data communication storage used for the FIFO channels. 

The latter could be mapped onto the local data memory of 

the PE, or could be implemented with a separate hardware 

FIFOs. A user should choose only one of the two methods. 

Some parameters of the memories include type, size, and 

number of I/O ports. Communication components are used 

for inter-processor communication and usually crossbar 

switches are being used (CB in Fig. 5). The topology of the 

entire MPSoC depends on the connection of the 
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communication component. Currently the Daedalus 

framework implements two types of topologies: a point-to-

point and a multi-FIFO. If at least one communication 

component is used in the system, it is considered a multi-

FIFO topology. If not a single one is used, and PEs are 

connected directly to each other through hardware FIFOs, 

then it is considered a point-to-point. Some parameters of 

the communication component include type and number of 

I/O ports. Communication controllers (CC) are used for 

synchronization of the data communication required by the 

PPN. Memory controllers connect each PE to its respective 

local memory. Because different types of memories could 

be used for program and data (SRAM, DRAM, Flash, 

ROM), different memory controllers also exist. An 

important memory parameter is the size of the memory. 

Peripheral components are the entry and exit points of the 

data to be processed in the streaming data system. Such 

devices could be UARTs and off-chip memories. For code 

profiling purposes timer modules are also included. Links 

are used to connect two or more ports of a device from the 

MPSoC together. Links are transparent from system-level 

point of view. 

 
Fig. 5.  An example multi-processor platform, where µP is a 

microprocessor, MC is a memory controller, CC is a communication 

controller, CM is a communication memory, MEM is a microprocessor’s 

local memory. 

The application specification file contains a PPN, with 

processes and FIFO channels in an XML format. This file is 

the output of the PNgen tool. The information about the 

number of times a specific function is executed can be 

written to a parametrized iteration domain captured in a 

compact matrix form. The application file contains 

important information about the iterations when an input 

port has to be read from and when an output port has to be 

written to. 

The mapping specification file contains information about 

the connection between processing elements and application 

tasks. It is in an XML format and an example is given 

below. It assumes an MPSoC with four processing 

components and five PPN processes.  
<mapping name = "myMapping" > 
<processor name = "uP1" > 
 <process name = "P4" /> 
</processor> 
<processor name = "uP2" > 
 <process name = "P2" /> 
 <process name = "P5" /> 
</processor> 
<processor name = "uP3" > 

 <proces name = "P3" /> 
</processor> 
<processor name = "uP4" > 
 <process name = "P1" /> 
</processor> 
</mapping> 

A single process could be mapped to a single component, 

like in the case with uP1, uP3 and uP4. Also, multiple 

processes could be mapped onto a single component, like in 

uP2. However, a single process cannot be mapped to 

multiple processing elements which yields an asymmetric 

multiprocessing system (AMP). The mapping of the FIFO 

channels to memories is not described anywhere in this file. 

As mentioned before, this is done by ESPAM automatically. 

VII. CONCLUSIONS 

In the presented paper the authors presented insights 

about the high-level synthesis framework called Daedalus. It 

is an open-source framework for ESL synthesis and 

automatic generation of RTL hardware and software. 

Modern system design requires that a high-level approach is 

used to solve the problem and meet the time-to-market 

deadlines. The framework is complete and ready for 

production. The future development of Daedalus would be 

to increase the number of IP cores and supported back-end 

(RTL) environments. The industry is welcome to enhance 

and proliferate the tool. The original COMPAAN tool, that 

spawned Daedalus, has already seen real industrial action 

[7] and the results are promising. 
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