Middleware Approaches for Adaptivity of
Kahn Process Networks on Networks-on-Chip

Emanuele Cannella*, Onur Derin', Todor Stefanov*
*LIACS, Leiden University
Leiden, The Netherlands
tALaRI, University of Lugano,
Lugano, Switzerland
Email: cannella@liacs.nl*, derino@alari.chf, stefanov@liacs.nl*

Abstract—We investigate and propose a number of different
middleware approaches, namely virtual connector, virtual connec-
tor with variable rate, and request-driven, which implement the
semantics of Kahn Process Networks on Network-on-Chip archi-
tectures. All of the presented solutions allow for run-time system
adaptivity. We implement the approaches on a Network-on-Chip
multiprocessor platform prototyped on an FPGA. Their compar-
ison in terms of the introduced overhead is presented on two case
studies with different communication characteristics. We found
out that the virtual connector mechanism outperforms other
approaches in the communication-intensive application. In the
other case study, which has a higher computation/communication
ratio, the middleware approaches show similar performance.

Index Terms—System adaptivity; Kahn Process Networks;
Middleware; Networks-on-Chip;

I. INTRODUCTION

The complexity of multiprocessor systems on chip (MP-
SoCs) is rapidly increasing, driven by the technology improve-
ment and the adoption of more and more complex applications
in consumer electronics. Programming such complex systems
at a low level of abstraction is extremely difficult and error-
prone. A promising way to raise the level of abstraction is
using models of computation (MoCs) to specify applications.
Among these MoCs, Kahn Process Networks (KPNs) have
been widely studied and used for streaming/multimedia appli-
cations.

KPNs are composed by concurrent and autonomous pro-
cesses that communicate between each other using unbounded
FIFO channels. However, when implementing such a model
of computation on real platforms, FIFO channels size must
be bounded. In our approach, we use the pn compiler [1]
to automatically convert static affine nested loop programs
(SANLPs) to parallel KPN specifications and to determine
the buffer sizes that guarantee deadlock-free execution. Thus,
using the KPN model of computation allows us to program

Copyright 2010 IEEE. Published in the 2011 Conference on Design and
Architectures for Signal and Image Processing (DASIP 2011), scheduled for
November 2-4, 2011 in Tampere, Finland. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertis-
ing or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box
1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

an MPSoC in a systematic and automated way. Furthermore,
in KPNs, the control is completely distributed, as well as the
memories. This represents a good match with the emerging
MPSoC architectures, in which processing elements and mem-
ories are usually distributed.

Another favorable feature of the KPN MoC is that its
simple operational semantics allows for the easy adoption of
system adaptivity mechanisms. System adaptivity is becoming
increasingly important in the MPSoC domain for several
reasons, such as dynamic variation of quality of service
requirements, fault tolerance, or power efficiency.

Networks-on-Chip (NoCs) [2] are emerging communication
infrastructures for MPSoCs that, among many other advan-
tages, allow for system adaptivity. This is because the same
NoC platform can be used to run different applications, or to
run the same application with different mapping of processes.
However, there is a mismatch between the generic structure
of the NoCs and the semantics of the KPN MoC. Therefore,
in this paper we investigate and propose several approaches
to overcome this mismatch. All of the proposed approaches
consider system adaptivity as a driving objective and do not
require specific hardware support from the platform to realize
the inter-tile communication between processes.

The remainder of the paper is organized as follows: Sec-
tion I-A continues the introduction by stating the problem
along with a list of related work in Section I-C. The proposed
and investigated middleware approaches are described in de-
tail in Section II. The applications used in the middleware
approaches evaluation are explained in Section III followed
by the performance results in Section IV. Finally, Section V
concludes the paper.

A. Problem statement

The main problem addressed in our work is the efficient
implementation of a middleware allowing the execution of
applications modeled as KPNs on Network-on-Chip platforms.
The first requirement is that this middleware must respect the
KPN semantics. That is, processes must block on read, when
trying to get a data token from an empty FIFO, and block
on write, when trying to write data to a full FIFO. Moreover,
we want our middleware to be application-independent and
oriented to system adaptivity.

tile0 tilel
P
(Pt
PE
NI
_______ NoC
R R OHW
O sw

Fig. 1. Producer-consumer pair with FIFO buffer split over two tiles.

The communication and synchronization problem when
mapping KPNs on a NoC is depicted in Fig. 1. Consider
a producer P and a consumer C' connected through an
asynchronous communication FIFO link of size B. If both
the producer and the consumer can directly access the status
register of this FIFO buffer, to check if it is empty or full,
implementing the KPN semantics is straightforward. However,
in NoC implementations with no direct remote memory access,
processes can exchange tokens only via the network. Thus, we
have to split the buffer B in B” and B, one on the producer
tile and one on the consumer tile. We want to implement
the KPN semantics without a dedicated support from the
underlying architecture that allows checking for the status
of the remote queues. If B is the minimum buffer size that
guarantees deadlock-free execution of the original KPN graph,
the size of BY and B¢ must be set such that BY + B¢ > B.

We do not require support for multiple hardware FIFOs on
each NoC tile. The only hardware buffer of a tile resides in the
Network Interface (NI). We just rely on the ability to transfer
tokens, in both directions, from this buffer to the software
FIFOs which implement the channels of our KPN.

Even if the consumer can only access the status of B,
implementing the blocking read is trivial because every time
C wants to access BC and this buffer is empty, the consumer
just has to wait until tokens arrive from the producer tile.
However, since the producer can only access the status of B”,
implementing the blocking on write behavior is more difficult.
The producer must know that the remote buffer B is not full
before sending tokens to C' over the NoC. There are several
ways to notify the producer about the status of the buffer on
the consumer side, and we will compare the approaches that
we have investigated in Section II.

Furthermore, we want our middleware to take care of the
distribution of processes among the NoC tiles with no influ-
ence on the application designer. This means that we want to
maintain the code structure of the KPN application processes,
an example of which is shown in Fig. 2(b). In particular,
we want the communication primitives of KPN processes
(read, write) to remain generic, without the notion of process
mapping or platform details. These generic primitives are
then translated by the middleware in mapping- and platform-

Process P2

for (i=0; i<M; i++) {

for (7=0; j<N: j+) {
CHI if (condition)
—>e READ (inl, CHI);
else
%ﬂv READ (inl, CH2);
out = F(inl);
CH3
WRITE (out, CH3);
1
ii

(@) (b)

Fig. 2.

Example of a KPN (a) and structure of process P2 (b).

dependent API function calls.

B. Paper contributions

The contributions of our paper are two-fold. On the one
hand, we propose different middleware approaches that enable
mapping-independent and efficient execution of KPN applica-
tions on NoC-based platforms. On the other hand, it enables
the run-time remapping capability of processes among the tiles
of the NoC, thus enabling their run-time adaptable execution.

C. Related work

Kahn process networks (KPNs) [3] are a widely studied
distributed model of computation used for describing systems
where streams of data are transformed by processes executing
in sequence or parallel. Previous research on the use of KPNs
in multiprocessor embedded devices has been mainly focusing
on the design of frameworks which employ them as a model
for application specification [4], [5], [6], and which aim at
supporting and optimizing the mapping of KPN processes on
the nodes of a reference platform [7], [8]. In [4], [5], different
methods and tools are proposed for automatically generating
KPN application models from programs written in C/C++.
Design space exploration tools and performance analysis are
then usually employed for optimizing the mapping of the
generated KPN processes on a reference platform. A design
phase usually follows in which software synthesis for multi-
processor systems [6], [8], or architecture synthesis for FPGA
platforms [4] is implemented.

The approaches described above, which map applications
described as KPNs to customized platforms, have a strong
coupling between the application and the platform. Running
a different application on the generated platform would not
be possible or, even if possible, would give bad performance
results. We adopt a different approach where we start by the
assumption that we have a platform equipped with hetero-
geneous cores well interconnected with a NoC. We provide
a KPN API for this platform that the KPN application pro-
cesses will comply to. Most importantly, the application code
remains the same in all possible mappings of the processes.
This is achieved by the proposed intermediate layer, called
middleware, that includes the mapping related information and
implements the KPN API.

This approach, where software synthesis relies on the high
level APIs provided by the reference platform for facilitating

chl
_______ AT
P B
>‘ ch2 =2
___________ L [T
tileQ
PE
credits
= g - - Virtualtokens
tokens chl, ch2
Fig. 3. Producer-consumer pair using the virtual connector method.

the programming of a multiprocessor system, can be seen
elsewhere. The trend from single core design to many core
design has forced to consider inter-processor communication
issues for passing the data between the cores. One of the
emerged message passing communication API is Multicore
Association’s Communication API (MCAPI) [9] that targets
the inter-core communication in a multicore chip. MCAPI is
the light-weight (low communication latencies and memory
footprint) implementation of message passing interface APIs
such as Open MPI [10]. However these MPI standards are not
quite fit for the KPN semantics [11] and building the semantics
on top of their primitives is an additional overhead that may
not be afforded.

The communication and synchronization problem when
implementing KPNs over multi-processor platforms without
hardware support for FIFO buffers has been considered in
[12] and [8]. In [12] the receiver-initiated method has been
proposed and evaluated for the Cell BE platform. On the
same hardware platform, [8] proposes a different protocol,
which makes use of mailboxes and windowed FIFOs. The
difference with our work presented in this paper is that we
actually compare a number of approaches to implement the
KPN semantics, and that we deal with a different kind of
platform, with no Direct Memory Access support.

In [11] the active virtual connector approach has been
proposed and evaluated analytically, whereas our results are
obtained by experiments on a real implementation. Moreover,
in this paper we propose yet another approach, namely virtual
connector with variable rate.

In [13] the problem of implementing the KPN semantics
on a NoC is addressed. However, in their approach the NoC
topology is customized to the needs of the application at
design time and network end-to-end flow control is used to
implement the blocking write feature. In our work system
adaptivity is considered because the middleware enables run-
time management and the platform is generic, i.e. it allows
the execution of any application specified as a KPN.

An approach to guarantee blocking write behavior is also
used in [14]. That work proposes the use of dedicated oper-
ating system communication primitives, which guarantee that
the remote FIFO buffer is not full before sending messages
through a simple request/acknowledge protocol. Compared to
this kind of protocol, the middleware approaches described in

read(token, ch)

KPN Process (1 while(fifo[CHI] is empty)
< |2 process NI msgs();

for (F0; i<M; iH+) { .

for (70, J<N:) £ 3 fifo_get(inl, fifo[CHI]);
- ’ 4 send virtual token(CH1);
read (inl, CH1); - -

out = F(inl);

_ . write(token, ch)
write (out, CH3);

0 . 71 while(credit[CH3]=0)
) 2 process NI msgs();

. 3 decrease credit{ CH3];
.| 4 send token(out, CH3),

Fig. 4. Pseudocode of the VC approach.

our paper assume a more proactive behavior of the consumer
processes to guarantee the blocking on write.

II. MIDDLEWARE APPROACHES

This section describes the different solutions that we have
explored for the implementation of KPN process communi-
cation and synchronization on a tiled NoC-based architecture.
Basically, the proposed approaches differ in the frequency of
acknowledgment messages sent from the consumer process to
the producer process about the status of the consumer FIFO
buffers.

In all of the approaches described below, system adaptivity
is taken into account by using dedicated middleware tables
that list, among other information, the source and destination
tile for each channel of the KPN graph. For instance, when
the middleware is up to send a packet to the consumer of a
specific channel, it will check in the table what is the current
destination of that channel. Then, it will place the packet in the
NI output buffer, with the appropriate destination field of the
header. These middleware tables can be updated at run-time
to allow changing dynamically the mapping of application
processes over the tiles.

A. Virtual connector approach (VC)

In the virtual connector approach, which is depicted in
Fig. 3, for every channel in the original KPN graph we add a
virtual one in the opposite direction. This virtual connector
is used for acknowledging the producer about the status
of the FIFO buffer on the consumer tile. We adapted this
approach, previously proposed in [11], to the needs of our
system implementation. In that work the proposed middleware
is active, meaning that it is implemented using separate threads
which deal with the KPN communication, while in our imple-
mentation the middleware is static, with no separate threads for
communication. Although a comparison of the static and active
implementations may be worthwhile to do, for the moment we
adopt the static approach with the argument that the scheduling
and synchronization of additional middleware processes may
introduce an additional overhead due to the context switching
times.

virtual tokens / requests

@%i (a) (b)

tokens ch1, ch2

Fig. 5. Producer-consumer implementation: when using the VRVC, the
producer receives back virtual tokens (a); when using R, it receives requests

(b).

For each channel in the original KPN graph we instantiate
a software FIFO buffer on the consumer tile. The size of this
buffer is set to the value of the original buffer size in the
KPN graph. On the producer tile there are no software FIFOs
when using this approach, because tokens can be directly sent
over the network via the NI. This is due to the fact that the
credit-system guarantees that enough locations are free on the
remote buffers before sending a token. Therefore, referring
back to Fig. 1, in this approach for each channel i, B = B;
and Bf = 0.

In our implementation, we store on the producer side a
variable for each channel, called credit, which represents the
number of free slots in the remote FIFO buffer implementing
that channel. At startup, the credit is set to the size of the
remote FIFO (credit; = BiC), because all of its slots are free.
For each token sent over the network by the producer, the
credit of the corresponding channel is decreased by one. The
producer is allowed to send tokens over the network only if
the credit is positive, otherwise it blocks. This implements
the blocking write behavior. At the consumer side, for every
token consumed from that channel, a virtual token (VT) is
sent back to the producer via the virtual connector. For every
virtual token received on the producer tile, the credit of the
corresponding channel is increased by one. This way the
producer is constantly updated about the status of the remote
FIFO buffers.

The pseudocode of the VC approach is described in Fig. 4.
Both the read and write primitives use an auxiliary function,
process_NI_msgs(), that is used when blocking on read or on
write. This function checks the status of the NI buffer for
incoming packets. If the buffer is not empty, it processes one
packet at a time, until all the incoming packets are consumed,
in the following way. If the packet is an incoming token for
channel i, it stores the token in the software FIFO which
implements channel i. If it is a virtual token for channel j,
it consumes the packet and increase the credit of channel j.

Lines 1-2 of the read primitive implement the blocking read.
If the FIFO buffer corresponding to the calling channel (in the
example, CHI) is empty, process_NI_msgs() is executed until
new tokens for that channel reach the NI input buffer. Lines
3 and 4 complete the read primitive: the token is transferred

read(token, ch)

KPN Process [1 if (fifo[CHI1] is empty)
PN 2 send request(CHI);
f‘}”F.O* ﬂ’;‘*ﬁ", V" |3 while(fifo[CHI] is empty)
or (FO. N 4 process NI msgs();

read (inl, CHI); 5 fifo_get(inl, fifo[CH1]):

out = F(inl);

write(token, ch)

while(fifo[CH3] is full)
process NI msgs();

write (out, CH3); 1
3 2

. 3 fifo_put(out, fifo[CH3]);
.| 4 process NI msgs();

Fig. 6. Pseudocode of the R approach.

from the software FIFO to inl, and a virtual token is sent back
to the producer of CHI. This is actually done by putting in
the NI outgoing buffer a packet representing a virtual token
for channel CHI, as shown in Fig. 10.

Similarly, in the write primitive, lines 1-2 implement
the blocking write behavior. If the credit is zero, pro-
cess_NI_msgs() is executed. If virtual tokens for the blocked
channel are received, the credit is then increased and this con-
dition unblocks the write to that channel. Lines 3-4 complete
the write procedure. The credit for the considered channel is
decreased, and the token is sent over the network, which is
actually done by putting in the NI outgoing buffer a packet
representing the token (refer again to Fig. 10).

B. Virtual connector with variable rate approach (VRVC)

This approach represents a variant of the virtual connector
described above. The basic idea is that instead of sending
one virtual token to the producer for every consumed to-
ken of channel 7, the consumer sends it after n; consumed
tokens, where n; is a parameter that can be set such that
Vi e {1,---,Nep} 1 < n; < B;, where N, represents the
number of channels in the KPN graph. The credit variable for
channel ¢ will then be increased by n; for every virtual token
received for that channel. This approach leads to a reduced
traffic on virtual connectors, which can be beneficial in NoC
implementations to avoid congestion of packets.

Since the sending back of virtual tokens does not happen
for every consumed token, in some cases the KPN graph
properties require to store, also at the producer side, tokens
for the channels in order to avoid deadlocks. This requires the
adoption of software FIFO buffers also on the producer side.
In the most generic case, the size of these buffers should be as
large as the original buffer in the KPN graph. This means that
Vi € {1,---,Ng,} BF = BY = B;, as depicted in Fig. 5,
case (a). The pseudocode for the VRVC method is omitted for
the sake of brevity.

C. Request-driven approach (R)

This method is very similar to the approach used in [12] for
realizing the FIFO communication on the Cell BE platform.

readPixel

1

Fig. 7. KPN specification of the Sobel filter.

TABLE I
EXECUTION TIMES OF SOBEL FUNCTIONS

Process Execution time (c.c.)
readPixel 5
gradientX 31
gradientY 31
absValue 118
writePixel 5

In this approach, the transfer of tokens from the producer
tile to the consumer tile is initiated by the consumer. This
means that every time the consumer is blocked on a read at a
given FIFO channel, it sends a request to the producer to send
new tokens for that channel. The producer, after receiving this
request, sends as many tokens as it has in its software FIFO
implementing that channel.

Since also in this case we need to store tokens both on the
producer side and on the consumer side, we need software
FIFO structures on both sides. The size of these buffers is
set, for each channel 7, to match the size of the queue in the
original KPN graph (B;), such that Vi € {1,---, N} BF =
BY = B;. This condition guarantees deadlock-free execution
on the NoC and it is the same as in the VRVC approach. The
structure of a producer-consumer pair using the R approach
is shown in Fig. 5, case (b). Since the consumer buffer of
a channel is empty when a request is made, and given that
the FIFO buffers for that channel have the same size on both
sides, there is always enough space to store tokens sent by the
producer as a consequence of the request.

Fig. 6 shows the pseudocode of this middleware approach.
Similarly to the VC middleware, it makes use of the auxiliary
function process_NI_msgs() to process incoming packets of
tokens or requests. The main difference in this case is that
this function is in charge of reacting to a received request
message for a channel with the immediate sending of all the
tokens contained in the software FIFO that implements that
specific channel.

The blocking on read behavior is implemented in lines
1-4 of the read primitive. When the software FIFO of the
calling channel is empty, a request is sent to the producer
tile of that channel, and the processor keeps executing pro-
cess_NI_msgs() until a packet of tokens for the calling channel
arrives. The blocking on write is implemented in lines 1-2 of
the write primitive. When the FIFO of the calling channel

Fig. 8. KPN specification of the M-JPEG encoder.

EXECUTION TIMES OF M-JPEG FUNCTIONS

TABLE I

Process Execution time (c.c.)
initVideoln 18
videoln 1910
DCT 126386
Q 69238 (avg)
VLE 46688 (avg)
videoOut 1292 (avg)

(in the example, CH3) is full, the processor keeps executing
process_NI_msgs() until a request for that channel arrives.

III. CASE STUDIES

We evaluate the three middleware approaches presented in
Section II on two KPN applications with extremely different
communication/computation characteristics. The reason is that
we want to compare the overhead of the middlewares between
two extremes. The application described in Section III-A
represents the worst case (the first extreme), when the com-
putation/communication ratio is low and the KPN topology
is complicated. The case study described in Section III-B, on
the other extreme, is computation dominant and with relatively
simple KPN topology, therefore represents the best case. We
describe briefly the two case studies in order to allow a better
understanding of the obtained results. We also provide an
overview of the platform that we use to run the experiments.

A. Sobel filter

The Sobel application is an edge-detection algorithm for
digital images. Its KPN graph is shown in Fig. 7, where
the numbers over the edges indicate the minimal buffer sizes
needed for processing a 200x122 pixel input image. The KPN
processes which comprise this application are very lightweight
in terms of computation. The numbers of clock cycles required
for one execution of each function are summarized in Table I.
The most computationally intensive process is absValue, which
sums the absolute values of the outputs of the gradientX and
the gradientY processes and normalizes the result. For all of
the channels in the graph, the size of exchanged tokens is
4 bytes, and the number of written tokens is 23760. From
these metrics it is clear that the Sobel application is largely
communication-dominant.

B. M-JPEG encoder

The KPN specification of this application is shown in Fig. 8.
The size of tokens ranges between 16 and 1024 bytes, and all
of the channels are written 128 times, except the output of
initVideoIn which is written only once. The numbers of clock

PE PE

tile, tile,

Fig. 9. NoC platform structure.

cycles required for the execution of each function of the M-
JPEG application are summarized in Table II. This application
shows a much simpler communication and synchronization
pattern compared to Sobel, and it also has a much higher
computation/communication ratio.

C. Platform setup

The system on which we evaluated our middleware ap-
proaches is based on a 2x2 mesh of tiles, connected via a
Network-on-Chip. Each tile is composed by a MicroBlaze
processor, with its program and data memories, and a Network
Interface. The platform does not support remote memory
access. The system runs at the frequency of 100 MHz.

Each processor has multi-tasking capabilities thanks to the
use of the Xilkernel operating system, a lightweight, cus-
tomizable kernel provided by Xilinx. In case of many-to-one
mapping, i.e. when more than one process are mapped on the
same processor, the scheduling is data-driven. This means that
a process runs as long as it blocks in reading or writing. When
the process blocks, it yields the processor control to the next
process in the ready queue.

As shown in Fig. 9, the Network Interface contains the only
two hardware FIFOs inside the tile, one for packets which are
incoming from the NoC, and one for packets that have to be
injected in the NoC. The processor is able to quickly access
the status of the incoming hardware FIFO, via a dedicated
signal, to see if there are messages to be forwarded from the
NI buffer to the SW FIFO buffers that implement the channels
of the KPN graph. In the opposite direction, when a packet has
to be sent over the NoC, the processor forwards data from its
data memory to the outgoing NI hardware FIFO, then the NI
injects the packet in the network, with the appropriate header
(destination tile and payload size fields). The packets are sent
over the NoC using wormhole routing. As shown in Fig. 9,
routers (Ry and R;) use input buffering to store incoming
flits. Moreover, in our implementation the routers use a simple
round-robin arbitration policy.

The actual structure of the different kind of messages that
are sent over the NoC is represented in Fig. 10, for the
VC and R approaches. At NoC-level, the packet comprises
a NoC header, that indicates the destination tile and the
size of the payload, and the payload itself, which is the
middleware (MW)-level packet. The structure of MW-level
packets depends on the middleware approach. In R, a request

| tkn_n ‘ i

N—n_tokens——X\ |
- ‘R approach

1 packet(CH) | CH |n7t0kens |tk1171

request(CH)

MW-level . e
packets .
'VC approach
virtual token(CH)
NoC-level ; : Y el
packets | dest_tile | n_flits | MW_packet
Fig. 10. Structure of middleware- and network- level packets.
tiley tile; tiley tile,

video
In

& i

(@ (b)

Fig. 11. Fixed mappings for Sobel (a) and M-JPEG (b) to test the different
middleware approaches.

for channel number ¢ is implemented as a single flit, with
value —i. A packet used for transferring tokens, instead, has
a header composed of two flits (channel number, number of
sent tokens) and a payload with the sent tokens. The field that
indicates the number of sent tokens (n_tokens) is necessary
because this number is determined at run-time, when a request
for that channel is received. The structure of MW-level packets
in VC is very similar, the only difference is that there is no
need for a n_tokens field because in this method there is no
packetization of tokens, i.e. n_tokens is always equal to one.

IV. EXPERIMENTAL RESULTS

The platform described in Section III has been implemented
on a Virtex5 FPGA prototyping board. We run the two
application case studies, with all the middleware approaches
proposed in Section II, to obtain the results described below.

A. Inter-tile communication efficiency

In order to compare the efficiency of inter-tile communica-
tion of the different middleware approaches, we execute the
two case study applications with fixed mappings, which are
shown in Fig. 11. We chose these mappings because they
expose the maximum amount of inter-tile communication,
therefore the obtained results are largely dependent on the
efficiency of the middleware.

We found out experimentally that the parameter n; of the
VRVC case gives the best performance when is set to its

60.000
OM-JPEG
50.000 B Sobel

40.000

30.000

20.000

10.000

0.000
vC

total execution time (M c.c.)

11

VRVC R
MW approaches

Fig. 12. Total execution time for different MW approaches.
18
OM-JPEG
i 16 B Sobel
a 14
2 12
K
g 10
£ 8
o
2 6
g 4
k=)
3 2
2 0
vC VRVC R
MW approaches
Fig. 13. Slowdown for different MW approaches.
maximum value, i.e. when Vi € {1,---, Ny} n; = BF.

The performance results, summarized in Fig. 12, show a large
difference of execution time for the Sobel application when
using different middleware approaches. However, in the M-
JPEG case all of the middleware approaches yield to similar
results. The VC approach performs much better, compared to
the others, in the Sobel application, because its implementation
does not require storing of tokens on the producer tile. This
leads to a faster communication process, because it avoids
the double copy (output variable — software FIFO — NI
buffer) that is necessary in the other cases. We argue that the
obtained results may change for NoC platforms with Direct
Memory Access (DMA) cores, that can benefit more from
the packetization of tokens allowed in the VRVC and R
approaches.

In order to evaluate the overhead imposed by the use
of the NoC interconnection and our middleware approaches,
we implemented customized point-to-point systems, for both
applications, as a baseline reference. In point-to-point systems,
generated using the ESPAM tool [4], a dedicated hardware
FIFO is instantiated for each channel of the KPN graph.
In this way, the hardware platform perfectly matches the
KPN MoC semantics. Obviously, customized point-to-point
implementations do not allow for system adaptivity, because
all the design decisions (e.g.: process mapping) have to be
made at design time. It is clear that in our NoC system we
sacrifice performance (especially for communication intensive
applications) for adaptivity, the ability of managing the system
at run-time, and generality, since the system is able to execute
any kind of KPN application. The performance slowdown,
when comparing the NoC system with the point-to-point

3000
M Total NoC traffic
2500 O Application data
traffic

2000

1500

1000

Total exchanged traffic (kflits)

500

VC VRVC R
MW approaches

Fig. 14. Traffic injected into the NoC by executing Sobel with different MW
approaches.

systems is shown in Fig. 13. It is noticeable that while the
Sobel application is highly penalized in the execution on our
NoC system, the M-JPEG application performs well because
of its higher computation/communication ratio and its regular
communication pattern. The reasons why the communication
onto the NoC platform is less efficient are mainly twofold.
The first reason is that in this implementation, several KPN
channels have to share the same physical channel (the NoC
link). The second reason is that in the NoC case we have
to use software FIFOs on the producer and on the consumer
side, which require additional memory copy operations which
would be unnecessary in the case of adoption of hardware
FIFOs.

Another important metric when executing applications on
a NoC is the amount of generated control traffic overhead.
In the VC case, for instance, this overhead is represented by
the NoC-level and MW-level headers, together with all the
traffic generated by the virtual tokens. Ideally, a middleware
should be designed to generate as less control traffic overhead
as possible.

Focusing on the Sobel application, since it has the most
complex communication pattern, we profiled the amount of
traffic injected in the network, depending on the middleware
approach that is used. The results, depicted in Fig. 14, show
two extremes: the VC and R methods. This large difference can
be explained by two factors. The first factor is the overhead
of packet headers. On the one hand, in the VC method, since
there is no packetization of tokens, each token travels in the
NoC with its own header. On the other hand, in the R case,
the producer sends as many token as present in its software
FIFO, in the same packet and therefore with the same header.
The second factor is that the traffic on virtual channels in VC
is much more than the traffic generated by requests in R. This
is because in the VC case a virtual token is sent back to the
producer for every consumed token, while in the R case the
requests are made less frequently, just when the consumer is
blocked on reading.

B. System adaptivity support

In order to assess the benefits of a different application
process mapping over the NoC, we run the M-JPEG ap-
plication using the mappings shown in Fig. 15. We proved

Processes
tile, Py: initVideoln + videoln
P,: DCT
P3: Q
P4: VLE + videoOut

(@) Teye =33.073 Mc.c.
NoC traffic =0 KB tileg tile,

tiley 6 tily tilex

(€) Texe=17.238 M c.c.
NoC traffic =384 KB

(b) Texe =17.342 M c.c.
NoC traffic = 128 KB

Fig. 15. Execution time and generated traffic as a function of the process
mapping. Only inter-tile communication links are depicted.

experimentally that different mappings actively impact metrics
like total execution time (7., in Fig. 15) and total exchanged
traffic over the NoC (NoC traffic in Fig. 15). In the current
implementation, the code for all of the processes are mapped
on each tile of the system, as separate threads (process
replication). A way to implement the run-time remapping
is as follows: threads are activated or stopped on selected
cores using the underlying operating system support, and the
dedicated middleware tables are changed, with the updated
source and destination tiles for each channel of the KPN.
For instance, in Fig. 15(a) all the processes of the M-JPEG
application are executed on one tile, and the communication
between processes does not happen via the NoC. However,
in Fig. 15(b) processes P, Ps;, P, are executed on one tile
and process P, runs on another tile. The middleware tables
which describe the source and destination of each channel
of the KPN are changed accordingly. Doing this at run-
time is our ongoing work. However, our main message is
that the middleware approach enables the described run-time
remapping feature by exposing the middleware tables and
the FIFOs of the application. The implemented middleware
is capable of supporting all mappings, thus allowing system
adaptivity.

V. CONCLUSIONS

We proposed and implemented three middleware ap-
proaches to execute Kahn Process Networks on Network-
on-Chip architectures. Experimental results on two applica-
tions with very different computation and communication
characteristics showed that the virfual connector approach
outperforms the others when implementing communication-
dominant applications. However, especially for this kind of
applications, the price we pay for system adaptivity and
generality is large in terms of performance, compared to
customized point-to-point systems. On the contrary, when the
computation/communication ratio of an application is higher,
as in the second case study, the overhead introduced by the

execution on NoC with all the proposed middlewares is much
lower.

VI. ACKNOWLEDGMENTS

This work was funded by the European Commission under
the Project MADNESS (No. FP7-ICT-2009-4-248424) and
with a collaboration grant by the HIPEAC Network of Excel-
lence. The paper reflects only the authors’ view; the European
Commission is not liable for any use that may be made of the
information contained herein.

REFERENCES

[11 S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: A Tool for Improved
Derivation of Process Networks,” EURASIP J. Embedded Syst., vol.
2007, pp. 19-19, January 2007.

[2] G. De Micheli and L. Benini, Networks on Chips: Technology and Tools.
Morgan Kaufmann, 2006.

[3] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information Processing '74: Proceedings of the IFIP Congress,
J. L. Rosenfeld, Ed. New York, NY: North-Holland, 1974, pp. 471-475.

[4] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated
Multiprocessor System Design, Programming, and Implementation,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 27, no. 3, pp. 542-555, 2008.

[5] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Bus,
K. Goossens, R. Peset Llopis, and P. Lippens, “C-heap: A heteroge-
neous multi-processor architecture template and scalable and flexible
protocol for the design of embedded signal processing systems,” De-
sign Automation for Embedded Systems, vol. 7, pp. 233-270, 2002,
10.1023/A:1019782306621.

[6] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek, “A retargetable
parallel-programming framework for MPSoC,” ACM Trans. Des. Autom.
Electron. Syst., vol. 13, pp. 39:1-39:18, July 2008.

[7]1 1. Bacivarov, W. Haid, K. Huang, and L. Thiele, “Methods and Tools
for Mapping Process Networks onto Multi-Processor Systems-On-Chip,”
in Handbook of Signal Processing Systems, S. S. Bhattacharyya, E. F.
Deprettere, R. Leupers, and J. Takala, Eds. Springer, Oct. 2010, pp.
1007—1040.

[8] W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele, “Efficient
Execution of Kahn Process Networks on Multi-Processor Systems
Using Protothreads and Windowed FIFOs,” in Proc. IEEE Workshop on

Embedded Systems for Real-Time Multimedia (ESTIMedia). Grenoble,
France: 1IEEE, 2009, pp. 35-44.
[9] “Multicore associations communication api.”” [Online]. Available:

http://www.multicore-association.org

“A high performance message passing library.” [Online]. Available:
http://www.open-mpi.org/

O. Derin, E. Diken, and L. Fiorin, “A Middleware Approach to
Achieving Fault-tolerance of Kahn Process Networks on Networks-on-
Chips,” International Journal of Reconfigurable Computing, vol. 2011,
no. Article ID 295385, p. 14 pages, February 2011, selected Papers from
the International Workshop on Reconfigurable Communication-centric
Systems on Chip (ReCoSoC’ 2010).

D. Nadezhkin, S. Meijer, T. Stefanov, and E. Deprettere, “Realizing
FIFO Communication when Mapping Kahn Process Networks onto the
Cell,” in Proceedings of the 9th International Workshop on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, ser.
SAMOS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 308-317.
A. B. Nejad, K. Goossens, J. Walters, and B. Kienhuis, “Mapping KPN
Models of Streaming Applications on A Network-on-Chip Platform,”
in ProRISC 2009: Proceedings of the Workshop on Signal Processing,
Integrated Systems and Circuits, November 2009.

Gabriel Marchesan Almeida and Gilles Sassatelli and Pascal Benoit
and Nicolas Saint-Jean and Sameer Varyani and Lionel Torres and
Michel Robert, “An Adaptive Message Passing MPSoC Framework,”
International Journal of Reconfigurable Computing, vol. 2009, p. 20,
20009.

[10]

(11]

[12]

[13]

[14]

