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ABSTRACT

In this paper, we address the problem of how to achieve energy-
e�cient con�ned-interference communication on a bu�erless NoC
taking advantage of the low power consumption of such NoC. We
propose a novel routing approach called Sur�ng on a Bu�erless NoC
(Surf-Bless) where packets are assigned to domains and Surf-Bless
guarantees that interference between packets is con�ned within
a domain, i.e., there is no interference between packets assigned
to di�erent domains. By experiments, we show that our Surf-Bless
routing approach is e�ective in supporting con�ned-interference
communication and consumes much less energy than the related
approaches.

1 INTRODUCTION

A Network-on-Chip (NoC) with low latency, high bandwidth, and
good scalability is a promising communication infrastructure for
large size many-core systems. However, as the NoC resource are
shared by di�erent packets, there may be signi�cant interference
between packets, which in�uences packet transmission time. If the
packets come from di�erent applications, the temporal behaviour
of an application depends on the behavior of other applications,
thereby making a many-core system non-composable. In a com-
posable system, applications are completely isolated and cannot
a�ect each others functional or temporal behaviors [1]. One way
to remove the applications dependency caused by the interference
between packets, a necessary step to make the system composable,
is to group the packets of di�erent applications into di�erent do-
mains and keep non-interference between domains [2, 3]. Thus, the
packets in one domain have no in�uence on the transmission time
of the packets in other domains. Such packet transmission scheme
we call con�ned-interference communication.

The interference between packets is caused by the contention on
the shared resource of a NoC, such as virtual channels (VCs), cross-
bars, input/output ports, and links. In order to support con�ned-
interference communication, these shared resources should be sep-
arated in space or in time. A straightforward way to implement
con�ned-interference communication is to assign di�erent VCs to
hold packets of di�erent domains (isolation in space) and to split
the utilization time of input/output ports, crossbars and links into
multiple time slots, then assign di�erent time slots to di�erent do-
mains at design-time (isolation in time). For example, as shown
in Figure 1, the NoC is used to transfer packets of two domains
(D0 and D1). The VCs (VC0, VC1, VC2, and VC3) are assigned to
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Figure 1: Con�ned-interference communication on a NoC.

di�erent domains. VC0 and VC1 are assigned to D0. VC2 and VC3

are assigned to D1. Packets of D0 and D1 can be held only in their
own VCs. At even clock cycles, only packets of D0 can go through
the crossbars, output ports, and links (distinguished by the red color
in Figure 1(a) and 1(b)). At odd clock cycles, only packets of D1 can
go through the crossbars, output ports, and links. In this way, there
is no interference between D0 and D1 because packets of di�erent
domains are completely isolated in space and time. However, to
separate the packets in space, each domain requires at least one VC,
which needs a large number of bu�ers and causes high static and
dynamic power consumption [4, 5]. For example, the NoC with two
16-�it VCs per input port in Tera�op [6] and the NoCwith four 1-�it
VCs and two 3-�it VCs per input port in Scorpio [7] consume up to
28% and 19% of the total system power, respectively. In fact, such
high power consumption of a NoC has become the major bottleneck
that prevents applying NoCs on many-core systems [8]. Therefore,
it is critical to implement con�ned-interference communication
with low power/energy consumption.

A bu�erless NoC is a low power consumption communication
fabric. By eliminating VCs (bu�ers) in routers, bu�erless NoCs [9–
11] can signi�cantly reduce the power consumption of a NoC. How-
ever, as there are no VCs in routers to hold packets, packets have to
keep moving on the bu�erless NoC. Therefore, when contention oc-
curs between packets on the same output port, some of the packets
must be de�ected to other output ports, which makes the interfer-
ence between packets severe. As a consequence, the conventional
bu�erless NoCs do not support con�ned-interference communi-
cation. Furthermore, as VCs are eliminated, the bu�erless NoCs
cannot easily accommodate the transfer of multiple class pack-
ets in the cache protocol, because they cannot isolate/con�ne the
interference between di�erence class packets.

Therefore, in this paper, we address the problem of how to
achieve con�ned-interference communication on a bu�erless NoC.
In order to take advantage of the low power consumption of a bu�er-
less NoC and to achieve con�ned-interference communication, we
propose a novel routing approach called Sur�ng on a Bu�erless
NoC (Surf-Bless). The speci�c novel contributions of this paper are
the following:

• We propose a speci�c assignment and scheduling of domains
onto input/output ports, crossbars, and links. This speci�c
assignment and scheduling can be visualized as multiple
“waves" (see Figure 3) which move in space and time over



the NoC in a specially designed repetitive pattern. Di�erent
domains are assigned to di�erent waves and the packets of a
domain “surf" on their own waves, thereby achieving packet
routing with no interference between packets belonging to
di�erent domains. Our speci�c repetitive movement of the
waves guarantees that packets sur�ng on any wave do not
need to stop and wait at any router along their path to the
destination. Thus, VCs are not needed in routers, thereby en-
abling the utilization of bu�erless NoCs to transmit packets.
• We propose an extension for the architecture of a conven-
tional bu�erless NoC router that implements in hardware our
speci�c assignment and scheduling introduced in the afore-
mentioned contribution. By adding three simple hardware
schedulers in each router, our Surf-Bless routing is imple-
mented in a distributed way, which makes our approach
scalable and applicable for large size NoCs.
• By experiments, we show that Our Surf-Bless routing is ef-
fective in supporting con�ned-interference communication
and consumes much less energy than Surf-routing [2]. Fur-
thermore, our Surf-Bless overcomes the drawback of the
conventional bu�erless NoC [9] that can not support the
transfer of multiple class packets for the cache coherence
protocol.

The remainder of the paper is organized as follows: Section 2
gives some background information about the Surf-routing [2]
and the BLESS-routing [9] that have inspired our Surf-Bless rout-
ing. Section 3 provides an overview of the related work. Section 4
elaborates our novel Surf-Bless routing. Section 5 introduces the
experimental setup and presents experimental results. Section 6
concludes this paper.

2 BACKGROUND

In order to better understand the novel contributions of this paper,
in this section, we give some background information about the
Surf-routing [2] that realizes con�ned-interference communication
which requires VCs (bu�ers) in routers, and BLESS-routing [9]
that is a typical bu�erless routing with no support for con�ned-
interference communication.

2.1 Surf-routing

As introduced in Section 1, packets in VCs assigned to a domain
can be transferred only in the corresponding time slots in order
to achieve isolation in time. As a consequence, packets have to
be blocked extra clock cycles at each router to wait for their own
time slots, which results in high packet latency. In order to avoid
this extra blocking time, Surf-routing [2] assigns and schedules the
domains on two kinds of “waves": the north-west waveWNW and
the south-east waveWSE . The wave pattern is shown in Figure 2.
These waves move in space and in time over the network. The
red links (bolded arrows) on the waves indicate that these links
are assigned to domain D0 and only packets in domain D0 can
go through these red links. The packets of domain D0 “surf" on
the waves to the next routers. When packets arrive at the next
routers, the waves also arrive at the same routers. Thus, packets
can be continuously transferred and do not need to spend too
much extra time on waiting for their time slots. Therefore, packet
latency in a domain can be reduced. However, VCs in routers are still
necessary for the Surf-routing to separately hold packets because
when contention occurs between packets in the same domain, some
packets must be stored in VCs assigned to the same domain. As a
consequence, each domain in Surf-routing needs at least one VC.
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Figure 2: The wave pattern in Surf-routing.

2.2 BLESS-routing

By eliminating the VCs (bu�ers) in a router, BLESS-routing [9]
can signi�cantly reduce the power consumption. As there are no
VCs to temporarily hold packets, packets in BLESS-routing have to
keep moving in the links (or in the router pipeline). When multiple
packets contend for the same output port in a router, some of the
packets have to be de�ected to other output ports, which requires
that each packet should always �nd a free output port to go. This
packet de�ection is guaranteed because the number of the input
ports in a router is equal to the number of the output ports. The
packet de�ection may cause the livelock problem, i.e., packets keep
moving in the network but never reach their destination. In order
to avoid the livelock problem, the old-�rst arbitration policy [12] is
used to prioritize packets when they contend for the same output
port. When a packet becomes the oldest, it cannot be de�ected to
other output ports any more. Thus, the livelock is avoided.

3 RELATEDWORK

As VCs consume large proportion of the NoC power, several bu�er-
less NoCs [9–11] have been proposed to reduce the power consump-
tion. Based on packet de�ection, BLESS [9] eliminates the need for
VCs in routers and proves that the bu�erless NoC is e�ective when
the links utilization is low. CHIPPER [10] proposes a permutation
network de�ection routing which simpli�es the router structure
and reduces the bandwidth overhead caused by the old-�rst arbitra-
tion policy [12]. Without de�ecting packets but dropping packets,
Runahead [11] further simpli�es the router structure and it can be
used to achieve low latency communication. By eliminating the VCs,
[9–11] can signi�cantly reduce the NoC power consumption. How-
ever, as there are no VCs to temporarily hold packets, [9–11] cannot
support con�ned-interference communication, thus cannot be used
in composable many-core systems. In contrast, our Surf-Bless rout-
ing is an approach to achieve con�ned-interference communication
on a bu�erless NoC. Thanks to our Surf-Bless routing, it becomes
possible for a bu�erless NoC to be used in composable systems to
achieve energy-e�cient communication. Thus, compared with [9–
11], our Surf-Bless routing extends the applicability of the bu�erless
NoC.

As introduced in Section 2.1, by scheduling packets in di�erent
domains onto di�erent waves, the Surf-routing [2] can reduce the
packet latency caused by waiting for the corresponding time slots.
As an extension of Surf-routing, the router pipeline in PhaseNoC [3]
is time-multiplexed by all domains. PhaseNoC reduces the part of
the hardware overhead caused by separating the NoC resources
for di�erent domains. However, each domain in Surf-routing and
PhaseNoC needs at least one VC, which may lead to a large number
of bu�ers and cause high power consumption in case of multiple
domains. In contrast, based on the bu�erless NoC, our Surf-Bless
routing achieves con�ned-interference communication without the
need of VCs. Thus, our Surf-Bless routing is much more power
e�cient than the approaches in [2] and [3].
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Figure 3: Wave pattern in Surf-Bless routing.

By reserving time slots along a routing path, [13–15] realize
contention-free routing and guarantee that there is no interference
between packets. So, the NoC provides composable and predictable
services. As data �ows are time-multiplexed to use the NoC re-
sources, the router structures in [13–15] are simple and do not need
too much bu�ers, so the power consumption is low. However, to
achieve the contention-free routing, [13–15] need to globally sched-
ule all data �ows on the NoC at design time. As a consequence,
the contention-free routing in [13–15] is only applicable to static
data (packets) tra�c, where tra�c information, such as tra�c pat-
terns, the data volume of each data �ow, etc., are known at design
time. So, for dynamic tra�c patterns, i.e., tra�c unknown at design
time, [13–15] are not applicable. In contrast, our Surf-Bless rout-
ing schedules domains on the NoC and does not need to schedule
each packet. Thus, the scheduling in our Surf-routing is simpler
than [13–15]. Furthermore, our Surf-Bless routing does not need
the aforementioned tra�c information at design time to schedule
domains onto a NoC. Thus, our Surf-Bless routing is applicable to
dynamic tra�c patterns as well, providing composability services
to a system but cannot provide complete predictability for dynamic
tra�c.

4 SURF-BLESS ROUTING

The key idea of our novel Surf-Bless routing is to assign and sched-
ule domains onto waves that move in space and time over the NoC
in a specially designed repetitive pattern. Packets of a domain can
go only through the input ports, crossbars, output ports, and links
on the waves assigned to the same domain. Thus, as there is no
interference between waves, it is guaranteed that there is no in-
terference between di�erent domains. Furthermore, based on the
special wave pattern in our Surf-Bless routing, it is guaranteed that
in a router, the number of input ports assigned to one domain at the
current clock cycle, is equal to the number of output ports assigned
to the same domain at the next clock cycle. This makes it possible
to always de�ect packets if needed in order to keep packets moving
in the network instead of holding them temporarily in VCs. Thus,
we achieve con�ned-interference communication on a bu�erless
NoC, i.e., a NoC without VCs.

4.1 Wave pattern in Surf-Bless

In order to keep packets of a domain traveling to their destinations
without the need to stop and wait at routers, we assign and schedule
domains onto NoC resources in a special repetitive pattern, which
can be visualized as the “waves" shown in Figure 3. For the sake of
clarity, in Figure 3, we show only twowaveswhich are distinguished

by the blue color and the red color. These waves move in space and
time over the network and the pattern repeats after 6 time slots T.
In the following explanation, we take the red wave as an example
to describe our special wave pattern. The wave consists of three
sub-waves, the south-east sub-wave (WSE ), the north sub-wave
(WN ), and the west sub-wave (WW ). These sub-waves of a wave
must respect the following two rules: Rule-1: whenWSE reaches
the routers on the south-border of the network or the routers on the
east-border of the network,WN at the router on the south-border
andWW at the router on the east-border are triggered. For example,
at time slot T = 0,WSE reaches router 30 on the south-border and
router 03 on the east-border. At the same time,WN at router 30 and
WW at router 03 are triggered to move over the network. Rule-2:
whenWN reaches a router on the north-border orWW reaches a
router on the west-border,WSE must arrive at the corresponding
routers as well. For example, at time slot T = 4,WN andWW reach
the north-border at router 01 and the west-border at router 10,
respectively. At the same time,WSE reaches the same router 01
and 10. Constrained by these two rules, a wave moves over the
network repetitively, like a reverberating wave. As there is no any
overlapping between any twowaves, it can be guaranteed that there
is no interference between domains that are assigned to di�erent
waves.

In contrast to the wave pattern in the Surf-routing shown in
Figure 2, the wave pattern in our Surf-Bless routing guarantees
that a router has a certain number of input ports receiving packets
from the links belonging to a given wave at time slot (clock cycle)
T . At the next time slot T + 1, this router has the same number
of output ports sending packets to the links belong to the same
wave. Thus, thanks to our special wave pattern, it is possible to
de�ect packets when contention occurs on the same output port.
Therefore, the packets can keep moving in the network and we can
achieve con�ned-interference communication on a bu�erless NoC.

4.2 Router Architecture

In order to assign and schedule domains on the waves, shown
in Figure 3, to support con�ned-interference communication, we
extend a conventional bu�erless router, as shown in Figure 4. Our
extensions are indicated by the red color. The router consists of
�ve input ports, �ve output ports, one output allocator and one
crossbar.

In the input ports at the directions of north (N), south (S), west
(W), and east (E), VCs are eliminated but one register per input port
is used to construct the router pipeline. For the injection input port,
there are multiple VCs. These VCs are necessary for a bu�erless
NoC to temporarily hold packets coming from the network inter-
face. These VCs can be put in the router [9] or put in the network
interface [10]. We put these VCs in the router to simplify the con-
trol of the packet injection. In contrast to [9] and [10] with only
one VC in each injection input port, we utilize multiple VCs and
each VC is assigned to one domain. In this way, the packets in a
domain cannot be blocked by packets in other domains, i.e., the
Head-of-Line blocking [12] between packets in di�erent domains
is avoided.

The output allocator is used to implement our novel wave pat-
tern introduced in Section 4.1. Based on our routing algorithm
described in Section 4.3, it allocates the output ports for each in-
coming packet. In order to implement our wave pattern, three
schedulers: the south-east scheduler, the north scheduler, and the
west scheduler, are realized in the output allocator as shown in
Figure 4(b). Each scheduler corresponds to one sub-wave and is
responsible for a pair of input ports and output ports. The south-
east scheduler corresponds to sub-waveWSE and is responsible for
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Figure 4: Router architecture in Surf-Bless.

the pair {input = {N ,W , Injection},output = {S ,E,Ejection}}. This
implies that packets can be injected or ejected only on theWSE

sub-wave. The north scheduler and the west scheduler correspond
toWN andWW and are responsible for {input = {S },output = {N }}
and {input = {E},output = {W }}, respectively.

These schedulers have similar hardware structure. Taking the
south-east scheduler as an example, shown in Figure 4(b), it consists
of a counter and a decoder. The counter cyclically counts from
0 to Smax − 1. Smax is the maximal number of waves, which is
determined by the NoC size, the pipeline stage of router, and link
delay. It can be calculated by Smax = 2 × P × (N − 1), where P is
the hop delay in clock cycles (the delay of a packet to go through
one router and one link), and N is the number of routers in one
dimension on a N × N NoC. By setting speci�c initial values for
the counters in the router, we can realize the wave pattern shown
in Figure 3. The initial value for each counter in the router (x ,y)
(x and y are the router position in each dimension on the NoC) is
computed by the following equations:

InitialSE = (Smax × P − P (x + y)) mod Smax (1)

InitialW = (Smax × P + P (x − y)) mod Smax (2)

InitialN = (Smax × P − P (x − y)) mod Smax (3)

The decoder is a table and is used to assign di�erent waves to
di�erent domains. Based on these schedulers in each router, we
implement our special assignment and scheduling in a distributed
way without the need of global control.

4.3 Surf-Bless routing algorithm

The Routing Algorithm unit in the output allocator in Figure 4(b) is
used to allocate output ports for incoming packets. In our Surf-Bless
approach, a packet in an input port assigned to a domain can go
only through the output ports that are assigned to the same domain.
To respect this rule, we propose the following Surf-Bless routing
algorithm, which consists of two steps:

Step-1: select the highest priority packet from input ports; For
simplicity, our Surf-Bless routing uses the old-�rst arbitration pol-
icy [12]. Packets carry “age" information, i.e., the longer the packet
moves in the network the older it becomes. The oldest packet has
the highest priority. The packets in the injection input ports have
the lowest priority.

Step-2: choose an output port in the same domain; First, our
Surf-Bless routing algorithm uses X-Y routing to determine the
output port for the packet selected in Step-1. If the input port and
the determined output port are in the same domain checked by
comparing the outputs of the schedulers as well as the output
port is not granted to another packet, the output port is granted
to the selected packet. If this check fails, our Surf-Bless routing
tries the Y-X routing. If the same check fails again, one of the free
output ports assigned to the same domains is randomly granted
to the packet, thereby de�ecting the packet. For a packet in the
injection input port, if there is one free output port that is assigned
to the same domain with the injection input port, the packet in

Table 1: Parameters.

Network topology 8 × 8 mesh

Router 2-stage and 4-stage pipelines

Virtual channel 1 ctrl VC and 2 data VCs

Input bu�er size 1-�it/ ctrl VC, 5-�it / data VC

Routing algorithm X-Y DOR, Surf and Surf-Bless

Link bandwidth 128 bits/cycle

Private I/D L1$ 32 KB

Shared L2 per bank 256 KB

Cache block size 16 Bytes

Coherence protocol Two-level MESI

Memory controllers 4, located one at each corner

the corresponding VC can be transferred, otherwise the packet is
blocked in the corresponding VC.

As there are no VCs (bu�ers) for the N, S, W, and E input ports
in our routers, the routers need to de�ect packets, which may cause
livelock and deadlock problems. In Step-1, our Surf-Bless uses the
old-�rst arbitration policy [12] which guarantees that our Surf-Bless
routing is deadlock and livelock free. Dependent packets may cause
the protocol deadlock in a bu�erless NoC. For example, the protocol
packets described in [16] consist of a request packet and a reply
packet, where the reply packet must be injected to the network be-
fore a new request packet arrives, otherwise the new request packet
cannot be ejected to the network interface. However, in a bu�erless
NoC, a new request packet in the NoC has higher priority than the
reply packets staying at the network interface, so a new request
packet blocks the reply packets to be injected into the NoC. As a
consequence, cyclic dependency occurs between the request packet
and the reply packet, which may result in deadlock. In our Surf-
Bless routing, such dependent packets can be separately assigned
to di�erent domains. As there is no interference between packets
in di�erent domains, the cyclic dependency between packets is
removed and the deadlock is avoided.

5 EXPERIMENTAL RESULTS

In order to evaluate our approach in terms of performance and
energy consumption, we have implemented our Surf-Bless routing
on the full system simulator GEM5 [17]. The NoC model and power
model is based on Garnet2.0 [18] and Dsent [19], respectively. The
key parameters used in our experiments are shown in Table 1.
Considering the previous works [9] and [10], the router pipeline
delay in the bu�erless NoC is set to 2 clock cycles. For a conventional
virtual channel router, we choose a 4-stage pipeline router.

For comparison purpose, we have implemented the following ap-
proaches: (1) WH [12]: the baseline wormhole NoC, which does not
support con�ned-interface communication; (2) Surf [2]: a con�ned-
interference NoC with the Surf routing brie�y introduced in Sec-
tion 2.1; (3) BLESS [9]: the bu�erless baseline NoC brie�y introduced
in Section 2.2, which does not support con�ned-interference com-
munication; (4) SB: our Surf-Bless approach supporting con�ned-
interference communication on a bu�erless NoC.

5.1 Evaluation on Synthetic Workloads

In this section, we evaluate our approach in terms of the ability
of supporting con�ned-interference communication, energy con-
sumption, average packet latency, and throughput. Based on our
NoC con�guration in Table 1 and the Smax equation introduced in
Section 4.2, there are Smax = 2 × 3 × (8 − 1) = 42 waves. The do-
mains are equally and evenly assigned to these waves. For example,
in section 5.1.1 there are two domains. One domain is assigned to
the even waves and the other one is assigned to the odd waves. The
uniform random tra�c pattern described in [12] is used to inject
1-�it packets into the NoCs in our experiments.
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Figure 5: Non-interference between domains.
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Figure 6: Energy consumption.

5.1.1 Confined-interference Communication. In order to test the
ability of con�ning the interference between packets from di�erent
domains in our SB, we use two domains. One domain is regarded as
interference tra�c. By observing the latency and throughput of the
other domain, we can check if there is any interference between
packets in the di�erent domains.

Figure 5(a) and Figure 5(b) show the average packet latency and
the maximal throughput provided by SB and BLESS for the other
domain considering di�erent injection rates of the interference traf-
�c, respectively. By increasing the injection rate of the interference
tra�c, the average packet latency and the throughput provided by
our SB for the other domain stays constant, which indicates that
SB is e�ective on isolating the interference between domains. In
contrast, as BLESS does not support con�ned-interference com-
munication, the average packet latency and throughput provided
by BLESS for the other domain are signi�cantly impacted by the
interference tra�c.

5.1.2 Energy Consumption under Di�erent Domains. In this sec-
tion, we evaluate the energy consumption considering one domain
(D_1), · · · , nine domains (D_9). Each domain has one VC with the
size of 4-�it. The domains are equally and evenly assigned to the
waves. The packets are equally assigned/injected to each domain. In
our experiment, we evaluate the energy consumption of the NoCs
in a time period of 1 million clock cycles (the frequency is 1GHz)
under packet injection rate 0.05 packets/node/cycle.

Figure 6 shows the energy consumption across D_1, D_2, · · · ,
D_9. The NoC energy consumption is broken down into dynamic
and static router energy consumption and total link energy con-
sumption. Compared to Surf with di�erent domains, the total en-
ergy consumption in SB is signi�cantly reduced. This energy re-
duction increases with the number of domains increasing. This
is because, by eliminating the VCs for the N, S, W, and E input
ports in a router, the router in our SB has much lower static en-
ergy consumption and simpler architecture than the router in Surf.
Furthermore, with the number of domains increasing, in our SB,
only injection input ports need to increase the number of VCs to
separately hold packets for di�erent domains. While in Surf, all
of the input ports need to increase VCs to separately hold packets
for di�erent domains, which causes sharply increase of the static
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Figure 7: Latency across di�erent number of domains.

energy consumption. On the other hand, compared with BLESS, as
SB needs multiple VCs in the injection, Surf-bless causes higher
static energy consumption than BLESS.

5.1.3 Average Packet Latency under Di�erent Domains. Figure 7(a)
and Figure 7(b) shows the average packet latency of Surf-Bless and
Surf under 1_D, D_2, · · · , D_9, respectively. In Figure 7(a), the
curves of D_2, D_3, and D_6 are overlapped and have the highest
throughput. D_4, D_5, D_7, D_8, and D_9 have higher average
packet latency and lower throughput. This is because, in SB, the
packet injection/ejection happens only on the south-east sub-wave
WSE . This means that when a packet in a domain reaches its des-
tination router on the north sub-waveWN or the west sub-wave
WW andWSE assigned to the same domain has not reached this
router yet, this packet cannot be ejected and has to be de�ected
to a downstream router, in spite of the fact that this packet has
already reached its destination router. This negative impact does
not happen for D_2, D_3, and D_6, because sub-waveWW and
WSE always reach a router at the same time with sub-waveWSE .
However, for the D_4, D_5, D_7, d_8, and D_9, this negative impact
is serious and causes high packet latency increase.

Compared Figure 7(a) with Figure 7(b), when the number of
domains is 5,7,8, and 9, SB has higher performance penalty than
Surf in terms of the average packet latency and the throughput.
This is because of the shortage of our SB to assign domains on
waves. As a consequence, our SB is e�ective in supporting con�ned-
interference communication and has comparable performance with
Surf when the number of domains is 2,3,4, and 6.

5.2 Transfer of Multiple Class Packets

In the cache coherence protocol, there are multiple class packets,
which should be separately hold in di�erent VCs and transferred
in di�erent virtual network [12]. It is necessary to guarantee there
is no protocol deadlock. However, as there are no VCs, the conven-
tional bu�erless NoCs does not support the transfer of multiple
class packets. While, by supporting con�ned-interference commu-
nication, our SB can easily support the transfer of di�erent class
packets for the cache coherence protocol.

To do so, we apply our SB on transferring di�erent class packets
for the MESI protocol [20], which needs two data virtual networks
to transfer 5-�it packets and one control virtual network to transfer
1-�it packets. To separate packets of di�erent virtual networks,
we set three domains and packets of each virtual network are as-
signed/injected to one separated domain. There are 42 waves in our
experiment. To continuously transfer 5-�it packets, packets of one
data virtual network are assigned to three sets of waves {0,1,2,3,4},
{15,16,17,18,19}, and {30,31,32,33,34}, and packets of the other
data virtual network are assigned to another three sets of waves
{7,8,9,10,11}, {22,23,24,25,26}, and {37,38,39,40,41}. It should be
noted that the 5-�it packets only choose the output port assigned at
the begin of the wave sets. The 1-�it packets of the control virtual
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Figure 8: Application execution time.
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Figure 9: Latency.

network are assigned to the rest of the waves. As BLESS does not
support the transfer of multiple class packets with various number
of �its, BLESS is not considered in this experiment.

5.2.1 Application Execution Time. Figure 8 shows the execution
time of the nine applications in Parsec [21], which is normalized to
WH (each input port has two data VCs and one control VC to build
three virtual networks) as the baseline. Compared with WH, our SB
causes an average of 3.23% performance penalty, which is less than
the 4.13% performance penalty in Surf. In two applications (dedup
and �uidanimate), our SB achieves less than 1% performance
penalty. In vips, our SB has its largest performance penalty of
12.27%. While, for Surf, the largest performance penalty of 10.99%
happens for ferret. An interesting observation is that Surf achieves
2.14% performance improvement for swaption. This improvement
can be attributed to the acceleration of some packets’transmission.

5.2.2 NoC Packet Latency. Figure 9 shows the average packet la-
tency for the nine applications. The average packet latency is broken
down into the blocking time in the network interface (queue latency)
and the transmission time on the NoC (network latency). Compared
with WH, the average packet latency in Surf and SB is signi�cantly
reduced in dedup, swaption, and x264, while, in blackscholes,
ferret, and vips, the average packet latency increases. Most of the
latency decrease comes from the queue latency reduction of the
packets, while the latency increase is caused by the increase of the
network latency. This is because based on the wave assignment in
Surf and SB, the network resources are reserved by di�erent virtual
networks, which guarantees the packet transmission in each virtual
network. However, these resource reservation mechanisms also
undermine the e�ciency of the networks and cause the network
latency increasing.

By analyzing the result reports of GEM5, we found that most of
the latency decrease comes from the queue latency reduction of the
control (1-�it) packets, which may not be critical to improve the ap-
plication performance. As a consequence, even though the average
packet latency in Surf and SB is reduced for some applications, Surf
and SB still cause performance penalty in the application execution
time.

5.2.3 NoC Energy Consumption. Figure 10 shows the NoC en-
ergy consumption for the nine applications. It is broken down into
three parts, the static and dynamic power consumption of routers
and the total power consumption of links. As shown in Figure 10, SB
consumes much less energy than the related approaches. Compared
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Figure 10: Energy consumption.

with WH, our SB reduces total energy consumption with 53.6% on
average. This high energy reduction is achieved by eliminating
the VCs for the N, S, W, and E input ports in a route to reduce
the static energy consumption. In contrast, Surf has higher energy
consumption than WH. The link energy consumption is negligible,
because we use the low workload mode in Parsec.

6 CONCLUSION

In this paper, we propose the Surf-Bless routing and extend the
router architecture to implement Surf-Bless in a distributed way.
Based on our Surf-Bless approach, a conventional bu�erless NoC
is extended to support con�ned-interference communication. Fur-
thermore, by taking advantage of the low power consumption of a
bu�erless NoC, our Surf-Bless routing achieves con�ned-interference
communication with low energy consumption.
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