
On Compile-time Evaluation of Process Partitioning
Transformations for Kahn Process Networks

Sjoerd Meijer
Leiden Institute of Advanced

Computer Science,
Leiden University,
The Netherlands
{smeijer}@liacs.nl

Hristo Nikolov
Leiden Institute of Advanced

Computer Science,
Leiden University,
The Netherlands
{nikolov}@liacs.nl

Todor Stefanov
Leiden Institute of Advanced

Computer Science,
Leiden University,
The Netherlands

{stefanov}@liacs.nl

ABSTRACT
Kahn Process Networks is an appealing model of computation for
programming and mapping applications onto multi-processor plat-
forms. Autonomous processes communicate through unbounded
FIFO channels in absence of a global scheduler. We derive Kahn
process networks from sequential applications using the pn com-
piler, but the derived networks do not necessarily meet the per-
formance requirements. Process partitioning transformations can
achieve a more balanced network improving the performance re-
sults significantly. There are a number of process partitioning trans-
formations that can be used, but no hints are given to the designer
which transformation should be applied to minimize, for example,
the execution time. Therefore, we investigate a compile-time ap-
proach for selecting the best transformation candidate and show
results on a Xilinx Virtex 2 FPGA and the Cell BE processor.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications; J.6 [Computer-
aided Engineering]: Computer-aided design (CAD)

General Terms
Design, Performance

Keywords
Programming of MPSoC, Transformations, Kahn Process Networks

1. INTRODUCTION
Mapping application specifications onto multiprocessor systems

is a difficult and time consuming task as it involves careful parti-
tioning and assignment of partitions to processing elements. Af-
ter identification of the different tasks, they must be mapped onto
different processing elements and proper synchronization and data
communication must ensure correct execution.

The Daedalus framework [9] helps the designer with the diffi-
cult task of programming and mapping applications onto Multi-
Processor Systems on Chip. In this framework, the Kahn Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

A)

for (i=0; i<4; i++)

for (i=0; i<4; i++)

a[i],b[j] = F(a[i],b[j]);
for (j=0; j<4; j++)

a[i],b[i] = init();

init F

B)

a_2

a_1

b_1

b_2

F

init

F

a_1

b_1

a_2

b_2 b_2

a_2

a_1

:
for (i=0; i<4; i++)

if(i%2==0)

if(i%2==1)

a[i],b[j] = F(a[i],b[j]);

a[i],b[j] = F(a[i],b[j]);

for (j=0; j<4; j++)

Figure 1: Kahn Process Network

Network (KPN) model of computation is used as a programming
model. KPNs are automatically derived from sequential nested-
loop programs by using the pn compiler [15, 14]. In the derived
parallel KPN specification, the following partitioning strategy is
used: each process in the KPN corresponds to a function call state-
ment in the sequential program. The control code for process syn-
chronization and data communication is automatically derived thereby
relieving the designer of this error-prone task. Figure 1 A) shows a
two node network with 4 FIFO channels and the nested loop pro-
gram from which this network is derived. Deriving the network
using the pn partitioning strategy, as described above, does not nec-
essarily lead to optimal performance results as the network may not
be well balanced. Therefore, process partitioning transformations
can distribute the workload of a single node over multiple nodes to
better balance the network. We can achieve this, for example, as
shown in Figure 1 B). The function call statement F is duplicated
and assigned to odd and even iterations of the outer loop iterator.
The corresponding network has now two nodes executing the F
function resulting in a more balanced network. In [12], a number of
algorithmic transformations have been presented which a designer
can apply on the source-code to balance the network. However,
no hints are given to the designer when a particular transformation
can be applied to minimize, for example, the execution time. So, a
number of algorithmic transformations have been defined, but the
designer does not know when to apply which transformation. In our
motivating examples (Section 1.2) we show that it is not straight-
forward to select the best transformation for the best performance
results. In order to select the best partitioning transformation, the
different alternatives must be evaluated and metrics are required to
do so. This paper’s contributions therefore include:

1. Definition of evaluation metrics;

2. Calculation of the metric values using an analytical frame-
work;

3. A compile-time evaluation approach to select a particular
transformation based on the metric values.

31

We show results for 3 different applications with different proper-
ties mapped onto the Cell processor and a Xilinx Vertex 2 FPGA.

1.1 Background and Notations
In [12], a number of parametric source-code transformations have

been presented that can be used to partition processes. Two of
these algorithmic transformations are the modulo unfolding and the
plane-cut transformation. The former transformation is defined as
unfold(I,U), where parameters I and U are respectively the
iteration vector of the function of a process and the vector of un-
folding factors for each loop iterator. The latter transformation is
defined as planecut(I,P) where parameter I is the iteration
vector and parameter P is a set of plane-cuts.

1

2

3

4

21 3 4 21 3 4

1

2

3

4

i

A) Plane−cut

i

j

P1

P2

P1

P2

F

F

F

F F

F

F

F F

F

F

F

F

F

F

F

P1 P2

F F F F

F F F F

F F F

FFFF

j
b_1b_1 b_1 b_1

a_1

a_1

a_1

a_1

b_1b_1 b_1 b_1

a_1

a_1

a_1

a_1

a_2 a_2

a_2

a_2

a_2

a_2

a_2

a_2

b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2

a_2 a_2 a_2

a_2 a_2

a_2

a_2 a_2 a_2

a_2a_2

b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

F

B) Modulo Unfolding

a_2

a_2

a_2

a_2

b_2

i

Figure 2: Partitioning Examples

Figure 2 shows the dependence graph of the program depicted
in Figure 1 A) which is characterized by a two dimensional itera-
tion space and horizontal and vertical dependencies. Loop iterator i
corresponds to the outer loop and iterator j corresponds to the inner
loop such that the scanning order is from top to bottom and from
left to right. The arrows denote dependencies. The dependence
graphs are annotated with two possible partitionings which are the
result of applying transformations. The plane-cut transformation
planecut({i,j},{j=2}) has been applied in Figure 2 A)
such that partition P1 executes all points with j ≤ 2 (the white it-
eration points) and P2 executes all points with j ≥ 3 (grey points).
Another partitioning is shown in Figure 2 B) which corresponds to
the modulo unfolding transformation presented in Figure 1 B) and
is formally specified as unfold({i,j},{2,0}). All even iter-
ations are assigned to P1 and all odd iteration points are assigned
to P2. The plane-cut and unfolding transformations and partitions
differ in terms of the amount of inter-process communication (as
indicated with the bold arrows) and initial delay of the partitions.
In the plane cutting example, inter-process communication occurs
4 times and the first iteration (1, 3) of P2 must wait for 2 iterations
(1, 1) and (1, 2) of P1 before it can start executing. In the modulo
unfolding partitioning, P2 starts after 1 iteration of P1, but then 12
inter-process data transfers are performed. To analyze the effects of
different transformations we use a formal framework to which we
refer as polyhedral process networks. We consider polyhedral pro-
cess networks that are input-output equivalent to static affine nested
loop programs and use the pn compiler [15] to derive them. Thus,
process iteration spaces, input and output port domains are poly-
topes that can be efficiently manipulated and analyzed. To give an
example, the internal structure of one of the unfolded F processes
and source process init from Figure 1 B) are given in Figure 3.

A function call statement has a number of input and output argu-
ments and therefore the corresponding process in the Kahn Process

CH_1

CH_5

CH_3

..

F Process

if(j == 0)

 if(j−1 >= 0)

if(−j + 2 >= 0)
writeFIFO(CH_2, &out_2);

readFIFO(CH_1, &in_0);

Init Process

 } // for i
 } // for j

 init(&out_0, &out_1) ;

 if(i%2 == 0)

if(−i + 1 >= 0)

/* OP1 */

/* OP2 */

/* OP3 */ writeFIFO(CH_5, &out_1);

writeFIFO(CH_3, &out_0);

if((i−1)%2 == 0)

writeFIFO(CH_1, &out_0);

writeFIFO(CH_7, &out_3);

writeFIFO(CH_7, &out_3);/* OP2 */

 F(in_0, in_1, &out_2, &out_3);

readFIFO(CH_6, &in_1);

readFIFO(CH_5, &in_1);
/* IP3 */

readFIFO(CH_2, &in_0);

/* IP4 */

 if(i%2 == 0) {

 }

/* OP3 */

/* OP1 */

/* IP2 */

/* IP1 */

CH_2

..

CH_7CH_6

for(i=0; i<=3 ; i++)
 for(j=3; j<=3; j++) {

for(i=3; i<=6; i++) {
 for(j=0; j<=3; j++) {

 if(i−4 == 0)

if(i−4 == 0)

 } // for j
 } // for i

Figure 3: Structure of Unfolded Process F

Network (KPN) has a number of input/output ports to read/write
data. The structure of the process consists of a list of input ports, a
function call, and list of output ports. The iteration space domain
of a process Pk corresponds to all iterations of statement k in the
nested loop program and is defined, in general, as DPk = {x ∈
Z

d | Ax + b ≥ 0}. For process F in Figure 3, the iteration space
domain is a two dimensional space defined as DF = {(i, j) | 3 ≤
i ≤ 6∧0 ≤ j ≤ 3∧ i%2 = 0}. The n-th input port domain. IPn

Pk

of process Pk is defined as a subset of the process iteration space
where data is read from an incoming FIFO channel: IPn

Pk
⊆ DPk .

Similarly, we define an output port domain OPn
Pk

⊆ DPk as the
subset where data is written to an outgoing FIFO channel. In Fig-
ure 3, the FIFO read/write primitives are guarded by if-statements
defining the input/output port domains. So, the first input port do-
main is defined as IP1 = {(i, j) | 3 ≤ i ≤ 6∧ i%2 = 0∧ j = 0}.
A mapping function M l maps a point of the consumer process to a
producer iteration point such that OPPk = M l(IP l

Pk
). For exam-

ple, for a producer/consumer pair in a two dimensional loop struc-
ture

„
i
j

«
, which produces and consumes data at the same iteration

point, the mapping function is specified as M =
»

1 0
0 1

– „
i
j

«
. For

a given domain and iteration point x, the rank function returns the
number of iteration points smaller than x by using an expansion of
the lexicographical ordering. For example, the rank of point x in
domain D = {(i, j) ∈ Z

2} is described by the number of points
in the following set {(i′, j′) | i′ < i ∨ (i′ = i ∧ j′ < j)}. For
example, the rank of point (2, 3) in Figure 2, includes all points in
the set {(i, j) | i < 2 ∨ (i = 2 ∧ j < 3)}, which contains 6 points
in total. The lexicographical minimum point of a set is denoted by
lexmin and corresponds to point (1, 1) in Figure 2.

1.2 Motivating Examples
In this section we show performance results for two applications.

These two motivating examples show that the question which trans-
formation to apply contains many subtle parts, based on the inter-
play of many factors which may not be evident at first sight.

The first bar in Figure 4 corresponds to the performance result
for the unmodified application and its derived KPN in Figure 1 A)
mapped on the ESPAM platform [7, 8]. The application is executed

32

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3

Partitions

C

yc
le

s

Plane cut

Modulo Unfolding

Figure 4: Results on the ESPAM platform

in 4.8 million cycles. Then, the network is balanced by applying
the modulo unfolding and plane-cut transformations and thus two
partitions are created for function call statement F. The second bar
corresponds to the plane cut transformation and the third bar to
the two times unfolded version shown in Figure 1 B). The fourth
and fifth bars display results for creating three partitions using the
same transformations. It can be seen that the plane-cut transfor-
mation is better than the modulo unfolding: 2.5 million vs. 3.1
million cycles for creating 2 partitions and 1.8 million vs. 2.2 mil-
lion cycles for creating 3 partitions. These results are surprising
as the initial producer delay for the plane-cut is larger than for the
modulo unfolding, but still the plane-cut transformation leads to
better performance results. In this example, the number of intra
and inter-process communication is not important as the cost for
intra and inter-process communication are the same on the ESPAM
platform. Therefore, the measured performance results can only
be explained by a non-constant cost for the communication, which
involves a FIFO read/write primitive and a control part when to
read/write (the function workload cannot change and is constant).
We observe that by introducing modulo statements, the commu-
nication (the control part) becomes more costly as the modulo ex-
pressions will appear in the definitions of the input/output ports. An
example is the bold modulo statement in the F process in Figure 3.
The modulo statement is introduced as a result of the transforma-
tion and is evaluated every iteration. In general, the if-conditions
for reading/writing from/to FIFO channels are more expensive as
more complex expressions must be evaluated.

P1 P2 P3

C C

for (i=2; i<100; i++)
 for (j=0; j<100; j++)
 C(x[i], y[j], z[2*i][4*j]);

plane−cutmodulo
unfolding

for (i=2; i<100; i++) {
 for (j=0; j<100; j++) {
 if (j%2==0)

 }
 }

 if (j%2==1)
 C(x[i], y[j], z[2*i][4*j]);

 C(x[i], y[j], z[2*i][4*j]);

for (i=2; i<100; i++) {
 for (j=0; j<100; j++) {
 if (j>=50)

 else

 }
 }

 C(x[i], y[j], z[2*i][4*j]);

 C(x[i], y[j], z[2*i][4*j]);

Figure 5: Modulo unfolding vs. Plane-cut

Another application is shown in Figure 5. The original applica-
tion source-code at the top (the producer processes P1, P2, and
P3 are omitted for the sake of brevity) is transformed by unfold-
ing the inner loop two times: unfold({i,j},{0,2}), and a
plane-cut on the inner loop: planecut({i,j},{j=50}). The
KPN is topologically the same for both transformation, but inter-
nally the processes are different. In Figure 6, the performance re-
sults for the original network and both transformed networks are
shown. The first bar corresponds to the original network and it

0

5

10

15

20

25

cy

cl
es

 (
in

 m
ill

io
n

s)

KPN

Planecut

Unfold Inner

Figure 6: Results on the ESPAM platform

shows that the application requires 22 million cycles to finish its
execution. The second and third bar correspond to the plane-cut
and modulo unfolding and require, respectively, 17 million and 15
million cycles. We observe that the plane-cut method is slightly
worse compared to the modulo unfolding. Although there are no
dependencies between the two processes executing function C (see
Figure 5), the consumer processes C in the plane-cut example must
wait more iterations before the producer processes generate the first
data compared to the modulo unfolding example (this is discussed
in detail in Section 2.2 and the results section). From this example
we learn that it is not enough to consider only inter-process com-
munication and initial delay caused by other partitions, but also the
delay caused by all other producers. In Section 2, we define the
metrics that should be taken into account in applying and evaluat-
ing different transformations.

1.3 Problem Definition
There are many possibilities to partition processes as we have

shown in the previous section. Different partitioning strategies have
a significant impact on performance results and thus selecting the
best partitioning strategy is crucial in achieving the best possible
results. Figure 4 and 6, for example, show that it is not straightfor-
ward to select the best partitioning candidate. The challenge is to
find a compile-time solution to predict the best possible partition-
ing and thus minimize the execution time. Therefore, one should
be able to answer the following two questions:

• Given the two parameterized transformations unfold(I,U)
and planecut(I,P), which transformation should one ap-
ply for a given application?

• For a chosen transformation, what should be the parameter
values? For the unfold transformation, for example, one
should choose one or more loop iterators to unfold and cor-
responding unfolding factor.

2. PARTITIONING METRICS
A process Pk has an iteration space DPk and is transformed by

transformation H into m disjoint partitions H(DPk) = {D1
Pk

, .., Dm
Pk

}.
Different partitioning transformations result in partitions with dif-
ferent properties and in this section we discuss six metrics we have
identified to evaluate different partitionings. The metrics we dis-
cuss are i) computation costs, ii) communication costs, iii) initial
delays, iv) production period, v) data transfers, vi) additional con-
trol overhead.

2.1 Computation and Communication Costs
At each firing of a process, a function is executed as illustrated

in Figure 3 (function F). The complexity of this function can vary
from a simple multiply-accumulate operation in a matrix multi-
plication kernel to a coarse grain task such as a DCT in a JPEG

33

encoder application. The complexity of this function contributes,
among other factors, to the delay at which data is produced. In de-
termining the total execution time of a process, the workload, i.e.,
the computation cost, of a function for partition Dn

Pk
is taken into

account and is denoted by W (Dn
Pk

). An accurate costs description
is thus crucial for selecting the best possible partitioning strategy
and inaccurate descriptions can lead to wrong decisions. We con-
sider the function cost as an input parameter for our algorithm that
can be obtained by running the function once on the target platform.
Besides the firing of a function, a process reads from a number of
input channels to get all function input arguments at each iteration.
Similarly, it writes the result to a number of output channels. The
FIFO read/write primitives can be supported by hardware (e.g., the
ESPAM platform), or must be supported with a software implemen-
tation (e.g., the CELL). Clearly, the communication cost of data
communication depends on the target platform and can influence
the partitioning significantly. With a software implementation of
FIFOs, for example, data communication can easily become more
costly than the computation itself. The ratio of computation and
communication is an important metric to evaluate different parti-
tionings. To the costs for inter-process communication we refer as
Cinter and for intra-process communication we use Cintra. These
are constant costs to transfer a single token from a producer to a
consumer process and are obtained by checking the costs for the
read/write primitives on the target platforms.

2.2 Initial Delay
A partition may not directly start executing its first iteration as a

result of dependencies. In that case, a producer process, or another
partition, is responsible for generating the required initial data. We
define the initial delay as the number of iterations a producer exe-
cutes before it generates the first data for a partition and denote it
by Y (Dn

Pk
) for a partition Dn

Pk
. For example, the second partition

P2 in Figure 2 A) must wait 2 iterations for the producer before it
can start its execution and in Figure 2 B) the second partition can
start after 1 iteration. For each partition Dn

Pk
we calculate the ini-

tial delay, which may be caused by a producer process or another
partition. Each partition has a number of input ports and we de-
termine the lexicographical minimum point of each function input
argument. This point corresponds to the iteration point where data
is read for the first time with respect to that function argument. Fig-
ure 7 shows the function call statement F from Figure 3. It has two
input arguments in0 and in1. At different iterations, argument
in0 is read from input ports IP1 or IP2 , and the second argument
from input ports IP3 or IP4 .

IP1

IP2

IP3

IP4

in0

in1

F(in0,in1)

OP1

OP2

OP3

Figure 7: Function Input Arguments and its Delay Calculation

For each input argument, we determine the first read action by
considering the lexicographical minimum point of all associated
input ports. For the example above, we calculate the minimum of
IP1 and IP2 , and then we do the same for IP3 and IP4 . In gen-
eral, when there are x input arguments with y input ports associated

to the first function argument and z ports to the last argument, we
calculate the producer points as follows:

p1 = M(a), where a = lexmin(

y[
j=1

IPj)

: :

px = M(b), where b = lexmin(
z[

j=1

IPj) (1)

We apply the mapping function of each input port to obtain all pro-
ducer points p. The initial data is generated at these producer it-
eration points, which means that the consumer is waiting for all
preceding producer iteration points to receive its initial data. Now,
to calculate this initial delay, the rank function is applied to a pro-
ducer point returning the number of preceding iterations for a given
iteration point. We calculate this offset, the initial delay Y , for all
producer points p ∈ DP of the last partition Dn

C as follows:

Y (Dn
C) =

j
rank(p, DP) ifP �= C

rank(p, DP) +
Pn−1

x=0 Y (Dx
C) otherwise

(2)

It shows that if the producer P and consumer C are different pro-
cesses, then the offset is calculated based only on the number of
iterations of the producer process. If the producer point belongs to
the same process but to a different partition, then the delay of the
preceding partitions Y (Dx

C) is taken into account. The initial time
Tinit a consumer is waiting for initial data, is determined by the
slowest producer. To calculate this time, we consider all Y (Dn

C)
values as defined above. These values are multiplied by the work-
load of the corresponding producer Px and the maximum value is
taken:

Tinit = maxj{Y (Dj
C) · W (DPj)} (3)

2.3 Production Period
The calculation of the initial delay is not enough to accurately

estimate the execution of a partition. For example, a producer can
generate data for a consumer at its first iteration, but then it may
take a number of iterations before it generates new data. This illus-
trates that the production period of a producer process is another
import metric which we denote by d. A more elaborate example
is given in Figure 8. Both the circles and crosses denote iteration
points. The circles indicate that data is produced for a particular
consumer at that point, and the crosses indicate that no data is pro-
duced. A consumer process receiving data from these two produc-

21 ... j

1

:

i i

j1 2 ...

1

:

..

A) Production Period P1 B) Production Period P2

Figure 8: Production Period

ers is waiting 1 iteration for producer P1 and 10 iterations for P2
to generate the initial data so that the consumer can start execut-
ing. After this initial delay, producer P2 is producing data at each
iteration, while P1 is producing data in either 2 or 5 iterations.
We define the production period d as the average number of itera-
tions that is required to generate new data. The production period

34

is calculated by dividing the total number of iteration points of a
producer process by the total number of generated data tokens:

d =
domain size

generated tokens
(4)

In our analytical framework, we compute this by considering the in-
put port domains of a process/partition. We use the mapping func-
tion to obtain all corresponding producer points. The total number
of points in the partition domain divided by all producer points,
gives the average production period:

d =
|DP |

|M(IPC)| (5)

where IPC is the input port domain of consumer process C, M
is the mapping function which is used to obtain the producer it-
eration points for this input port domain, and DP is the iteration
space of the producer process P . To illustrate the production pe-
riod, we consider the example in Figure 8 and assume the iteration
spaces consist of 3 rows and 5 columns. The production period is
15
6

= 2.5 and 15
5

= 3 for producer P1 and P2, respectively. The
time Tperiod required to generate new data is the production period
multiplied by the cost for executing the function of the producer P :

Tperiod = d · W (DP) (6)

2.4 Data Transfers
Different partitionings can lead to a different number of inter-

and intra-process data transfers which is denoted by DT . We al-
ready considered the example in Figure 2 A), where the plane-cut
results in 4 data transfers (the bold arrows) from one process to the
other process and 20 transfers to/from the same process. In Figure
2 B), the partitioning strategy results in 12 inter-process data trans-
fers and 12 intra-process data transfers. The number of data trans-
fers is important. For the example discussed above, it is clear that
the plane-cut is better than the modulo unfolding if inter-process
communication is costly, because there are only 4 inter-process
communication compared to 12 transfers for the modulo unfolding
transformation. For a process Pk, we calculate the number of in-
tra and inter process communications by considering all input port
domains of this process and check, in the process network, if the
corresponding output port domain belongs to the same process Pk.
If this is the case, then we classify the channel as intra-process
communication, and inter-process communication otherwise. For
this reason, the formula to calculate the number of inter- and intra-
process communication is the same, just the set of ports is different:

DT inter =
X

i

|M i(IP i)|

DT intra =
X

j

|M j(IPj)|, j �= i (7)

Equation 7 shows that the size of all input port domains determine
the total number of intra/inter process data transfers.

2.5 Additional Control Overhead
The process partitioning transformations are source-code trans-

formation as already indicated and also described in [12]. In Fig-
ure 1 B), a function call statement is duplicated and assigned to
even/odd iterations of the outer loop iterator. We have shown in
Figure 3, that the control for reading/writing from/to FIFO channels
becomes more complex as a result of the source-code transforma-
tion. This additional control overhead can change the computation-
communication ratio. If this is not taken into account, then execu-
tion times cannot be accurately estimated leading to incorrect pre-
dictions which transformation is better. It is very difficult however,

to predict this additional control overhead as the nesting level of
the if-statements are different for each application and transforma-
tion. As a result, costs for the control overhead cannot be accurately
estimated at compile-time. Furthermore, it is not feasible to ask
the designer to provide the costs as there may be many ports to be
checked. However, there are cases when the control overhead can
be safely ignored. The additional control can only change signif-
icantly the computation-communication ratio if the computational
workload is small. With coarse grain tasks, the additional control
will not change significantly this ratio and it is not necessary to
take this into account in the cost function. Another approach to
avoid the additional control overhead is a manual modification of
the generated code. In case of the modulo unfolding for example,
the introduced modulo statements can be manually removed from
the generated code by adjusting the loop step-size and correspond-
ing conditions in the input/output port domains. The conditions for
the plane-cut are usually much simpler and thus can be ignored in
many cases. In our approach we consider examples with compute
intensive tasks and change manually the generated code to remove
the additional control.

3. SOLUTION APPROACH
In this section we present a solution approach and analytical

model to predict, at compile-time, which transformation should be
applied to obtain the best performance results. Given an applica-
tion, the decision to apply a particular transformation is made using
the decision tree shown in Figure 9. The transformations listed in
the leaf nodes are considered, the corresponding execution times
are calculated using the analytical model, and the minimum value
is selected. To balance the network, the designer starts with select-

Self Dependences

Analyse
Directions

− plane−cut (inner)
− omod

− plane−cut (inner)
− imod

− plane−cut (diagonal)
− omod

yes no

diagonal

− imod
− plane−cut

horizontal/vertical * *

*) Single dependence, or mulitple linearly dependent

Orthogonal
(linear independent)

Figure 9: Decision Tree

ing the most computationally intensive process which will be parti-
tioned using the unfolding or plane-cut transformation. In the par-
titioning process, inter-process communication is avoided as much
as possible by analyzing the self-dependencies of that process. If
there are no self-dependencies at all before the partitioning, then
a partitioning cannot introduce inter-process communication. If
a single self-dependence exists, then inter-process communication
can be introduced by a transformation if not chosen carefully. For
example, if there exists a single horizontal dependency, then ver-
tical partitions will introduce inter-process communication, while
horizontal partitions will not. For multiple dependencies that are
orthogonal to each other, a partitioning with inter-process commu-
nication cannot be avoided. These cases are captured in the deci-
sion tree. The first branch in the tree checks if there are any de-
pendencies. If not, then only the plane-cut and modulo unfolding

35

on the inner most loop iterator (indicated by imod in Figure 9) are
compared. The modulo unfolding on the outer loop is not consid-
ered because the initial delay will always be significantly bigger
than the other two partitionings and therefore it will never be bet-
ter. The best transformation is obtained by evaluating the execu-
tion times of the plane-cut and modulo unfolding on the inner loop
iterator. If there are self-dependencies, then the dependence direc-
tions are analyzed. For dependencies that are orthogonal to each
other, unfolding on the inner most loop is not considered because
this transformation leads to sequential execution of the partitions.
In this case, the plane-cut transformation must be compared with
unfolding the outer loop (refered to as omod).

Now we present how the execution time of a transformation can
be estimated and thus how transformations can be evaluated and
compared. It is calculated by summing the initial time Tinit the
last partition is waiting for data and the time Texec required for
executing that last partition Pi

n:

Ttransformation = Tinit + Texec (8)

The initial delay Tinit is defined in Formula (3) and represents the
maximum time before the first initial data is produced by a producer
process. The execution time Texec for a partitioning is defined and
calculated as follows:

Texec = |DPi
n | · max(Tavg_period, Titer) (9)

In this formula, Titer is the execution time that is required to ex-
ecute a single iteration of the last partition. The costs for firing a
function includes reading all its input arguments, firing of the func-
tion, and writing of the result(s) to the output port(s). If this time
is less than the time required by a producer to generate data, then
the execution of an iteration is dominated by the producer process.
For this reason, we check if Tavg_period ≥ Titer and use this time,
if necessary, multiplied by the number of points in the domain to
calculate the execution time Texec. The time required to execute a
single iteration Titer in this formula is approximated by consider-
ing the workload W of the partition P n

k , and the average time when
inter- and intra-process communication occurs:

Titer = W (Pk
n) +

DT inter

|DPk
n | · CRd

inter +
DT intra

|DPk
n | · CRd

intra (10)

where CRd
inter and CRd

intra are the costs for reading data through
inter and intra-process communication as defined in Section 2.1.
DT inter and DT intra are, respectively, the total number of inter
and intra process communications as defined in Formula (7). Note
that the costs for writing to FIFO channels is not taken into ac-
count as the processes do not block on writing; the consumer pro-
cess is computationally much more expensive than the producer.
If the computation of a process is not dominated by its own execu-
tion Titer, but by the producer(s) and its large production period(s),
then the average period Tavg_period from the producers is used to
calculate the execution time of a single iteration. Tavg_period in
Formula (9) corresponds to the execution time a partition is wait-
ing for data considering its producer process. The average time is
approximated taking into account the number of tokens transfered
between a producer-partition pair with respect to the total number
of data transfers. This number is used as a weight for the production
period of a producer. The average period Tavg_period is calculated
by summing the production period multiplied by the weight factor
for all n producers:

Tavg_period =
nX

i=1

T i
period · |OP i|Pn

j=1 |OP j | (11)

where Tperiod corresponds to the production period as defined in
Formula (6).

4. EXPERIMENTS AND RESULTS
In this section we present 3 different applications. The first ap-

plication is an application with a single diagonal dependence for
the compute node, the second application is a matrix multiplica-
tion, and the third is an application with four different producers
and (initial) delays. We map the applications on the ESPAM plat-
form [7, 8] prototyped on a Xilinx Virtex 2 FPGA and the CELL
processor [3]. For programming the Xilinx Virtex 2 Pro FPGA,
we use the Daedalus tool-flow [9] to implement a multi-processor
system on chip. Each process from the network is mapped onto a
MicroBlaze softcore processor and the processes are point-to-point
connected. The FIFO channels are implemented using FSL channel
components provided by Xilinx. We measured that writing/reading
to/from FIFOs is completed in just 10 clock cycles. The second
platform is the CELL BE processor and we use the code genera-
tor as described in [6] to map applications on the Cell processor
of a Playstation 3 console. We map the compute processes
to different SPEs and source/sink processes to the PPU. The FIFO
channels are implemented in local memories of both the producer
and consumer process. Synchronization with signals/mailboxes en-
sures mutual exclusive access, which makes the read/write primi-
tives much more expensive compared to the ESPAM platform.

4.1 Diagonal Dependence
In this experiment we consider a kernel as also used in [2]. This

example is used to check if we can correctly predict which transfor-
mation is better by using the analytical model as we have defined in
the previous section. The application is characterized by a compute
node with a two dimensional iteration space and a single diagonal
self-dependence as shown in Figure 10. The application has three

5

10

0

i

0

1

2
3
4
5

1 2 3

j

i
1 52 3 100

4 5 i

6 7 8 9

S1

S3
4

B) Partitioned Iteration Domain

j

S2

Diagonal Plane−cut

0 1 2 3 4 5
0
1
2
3
4
5

i

S2

DS2

Modulo unfolding

A) Nested−loop kernel

for (i=0l i<11; i++)

a[i] = init ();

for (i=0; i<6; i++)
for (j=0; j<6; j++)
 a[i+j] = a[i+j];

for (i=0; i<11; i++)
 sink(a[i]);S3:

S2:

S1:

P1

P2

P1 P2 P1 P2 P1 P2

Figure 10: Nested-loop Program and Partitioned Dependence
Graph

statements S1, S2, and S3 and the corresponding iteration spaces
and dependencies are shown in Figure 10 as well. In this example, a
triangular assignment of nodes to partitions using a diagonal plane-
cut results in two partitions P1 and P2 free of any inter-process
communication. Moreover, there is no initial delay for the partition
P2 with respect to the first partition P1. The modulo assignment
on the other hand, as also illustrated in Figure 10, would introduce
many inter-process communications and has a small initial delay
of 2 iterations. With this experiment, we investigate if the model
captures well the trade-off of having inter-process communication
at low costs, or a case without any inter-process communication
but with a relatively large initial delay. For testing purposes only,
the iteration spaces, compared to Figure 10, have been increased
in the experiments to 20 iterations points for producer S1, and a
2-dimensional iteration space of 10× 10 for the compute node S2.

36

To evaluate and determine the transformation to be applied for
this example, the decision tree is checked as presented in Section 3.
There is a self-dependence for compute node S2, so the left branch
is taken and the dependence directions are analyzed. It is a single
diagonal self-dependence and thus the decision tree indicates that
the transformations plane-cut and modulo unfolding on the outer
loop must be evaluated. These transformations are evaluated using
Formula (8) and the metric values are required to do so. Table 1
displays the metrics and their corresponding values of the second
partition P2 for the plane-cut and the modulo unfolding on the Cell
platform. The first row shows that the plane-cut transformation has

Metric planecut unfold (outer)
Producer Delay: Y (DS1),Y (DP1) 11, 0 0, 2
Production Period: d 20

10
(S1) 50

45
(P1)

Data transfers: DT inter , DT intra 10, 40 5, 45
Workload: W (P2) 5680 5680
Comm. Costs: Cinter , Cintra 1000, 18 1000, 160

Table 1: Partition P2 and its Metric Values on the Cell

an initial delay of 11 iteration caused by producer S1. The mod-
ulo transformation has an initial delay of 2 iterations caused by the
first partition P1. For the plane-cut experiment, 10 data tokens are
read from S1, which produces 20 tokens in total. Therefore, the
production period is 20

10
. The number of inter-process communica-

tions is 40 tokens, and 10 tokens of intra-process communication.
We measured that the function call statement on the CELL is com-
pleted in 5680 cycles. For both transformations, the inter-process
communication deals with data communication from the PowerPC
to the SPE and a single transfer is finished in 1000 cycles. The
intra-process communication cost is different though: for the un-
folding it involves communication between 2 different SPEs (160
cycles), and for the plane-cut a single SPE (18 cycles). Given the
metric values, we calculate the execution time of the modulo un-
folding transformation Tomod as follows:

Tomod = Tinit + Texec

Tinit = 2 · 5680 = 11360
Texec = 50 · 6311 = 315550, since Titer < Tavg_period

Tavg_period = 50
45

· 5680 = 6311

Titer = 5680 + 45
50

· 160 + 5
50

· 1000 = 5924, and thus:
Tomod = 11360 + 315550 = 326910

We see that the execution time is estimated by multiplying the
initial delay of 2 iterations with the workload of 5680. Then, the
total number of 50 iterations are multiplied by the costs for a sin-
gle iteration and added to the initial delay. If we do the same
for the plane-cut, then we obtain Tplane = 296880. Because
Tplane < Tomod, i.e., the execution time for the plane-cut trans-
formation is smaller than the modulo unfolding, our solution ap-
proach indicates that the plane-cut transformation must be applied
to obtain the best results. This compile-time hint is correct accord-
ing to the performance results shown in Figure 11. The purpose of
calculating the execution time is not to estimate the real absolute
performance results as close as possible, but to capture the trend of
the transformations instead. The difference of the calculated execu-
tion times and the performance results on the Cell, for example, can
be explained by the initialization and termination of SPE threads.

The first bar of Figure 11 shows the result for the original KPN
on the Cell. The application executes in just over 1 million cycles.
The second and third bar show the results for the plane-cut and
modulo unfolding where the plane-cut is significantly better than

0

200000

400000

600000

800000

1000000

1200000

C

yc
le

s

KPN

Planecut

Unfold

Figure 11: Diagonal dependencies: results on the Cell

the modulo, which corresponds to the compile-time hints as calcu-
lated above. For the ESPAM platform we perform the same calcu-
lations and predictions. The metrics are different only for the com-
putation and communication costs as shown in Table 2. The work-
load cost is 5000 cycles, and the cost for inter- and intra-processes
communication is 10 cycles.

Metric planecut unfold (outer)
Producer Delay: Y (DS1),Y (DP1) 11, 0 0, 2
Production Period: d 20

10
(S1) 50

45
(P1)

Data transfers: DT inter , DT intra 10, 40 5, 45
Workload: W (P2) 5000 5000
Comm. Costs: Cinter , Cintra 10,10 10,10

Table 2: Partition P2 and its Metric Values on ESPAM

Using these metric values, we calculate and predict the execution
time for both transformations on the ESPAM platform in the same
way as we have shown above. We find that Tmod ≈ 260000 and
Tplane ≈ 310000, such that Tmod < Tplane. Thus, the prediction
is that the modulo unfolding transformation is better and Figure 12,
indeed, shows that this prediction is correct.

0

500000

1000000

1500000

2000000

2500000

#
 c

yc
le

s

KPN

Planecut

Unfolding

Figure 12: Diagonal dependencies: results on ESPAM

The first bar shows the results for the original KPN, and the sec-
ond and third bars the performance results for plane-cut and un-
folding transformations. The unfolded network is finished in less
cycles compared to the plane-cut transformation. From this ex-
periment, we conclude that the analytical model captures well the
fact that the initial delay can be the dominating factor even if there
is inter-process communication. For the ESPAM platform namely,
the communication costs are cheap thereby making the initial delay
the crucial factor.

4.2 Matrix Multiplication
We consider a matrix multiplication kernel implemented with a

3 dimensional loop nest structure. A single plane and its depen-

37

Metric planecut unfold (outer)
Y (DP1), Y (DP2), Y (DP3), Y (DP4) 0, 100, 100, 100 200, 200, 0, 1

Production Period: d 0, 2, 2, 100 2, 2, 0, 1

Data transf.: DT inter,intra 40 · 103, 12 · 106 8 · 106 , 8 · 106

Workload: W (P4 ′) 5680 5680

Comm. Cost: Cinter , Cintra 160, 18 160, 18

Table 3: Partition P4 ′ and its Metric Values on the Cell

dencies are already shown in Figure 2. The matrix application is
an extension of this as there are a number these planes with depen-
dencies from each point in a plane to the same point in the next
plane. The matrix multiplication application is considered because
both transformations will lead to a great number of inter- and intra-
process communication, such that the same transformation may
have a completely different impact on the Cell than on the ES-
PAM platform. We verify that the analytical model and solution ap-
proach correctly predicts this behavior. The original KPN consists
of 4 processes. Processes P1 , P2 ,P3 initialize, respectively, the
matrix where the result is stored and the two matrices that are mul-
tiplied. Process P4 is the compute process and with the plane-cut
and unfolding transformations we create a second process P4 ′. We
consider compute process P4 , check the decision tree and see that
there are multiple self-dependencies for this process; the horizontal
and vertical dependencies are orthogonal to each other. Therefore,
we evaluate the plane-cut on the inner most loop iterator and mod-
ulo unfolding transformation on the outer most loop iterator. Note
that unfolding the inner loop is not necessary here as it would result
in sequential execution of the different partitions. If we experiment
with a kernel of 200×200×200 iterations and apply the plane-cut
transformation on the inner loop, then the first 100 iterations of the
inner loop are assigned to the first partition and the remaining 100
to the second. As a result, the delay of the second partition is 100
iterations. In the modulo unfolding all iterations of the outer loop
i%2 = 1 are assigned to the first partition, and i%2 = 0 to the sec-
ond. As a result, the delay is 1 for the second partition. The metric
values for this example are shown in Table 3, and it can be seen that
there are a great number of inter and intra process communications.

Now we compute the time for both transformation by using these
values in the formulas as we have presented before. We do no
repeat all intermediate steps to calculate these numbers, but just
give the final outcome. The analytical model gives as a result that
Tplane ≈ 2.04 · 1010 and Tomod ≈ 2.14 · 1010. Because the esti-
mated time for the plane-cut transformation is less than the modulo
unfolding, we conclude that the plane-cut transformation results in
better performance results. As can be seen in Figure 13, the ana-

0

50

100

150

200

250

C

yc
le

s
(i

n
 m

ln
)

KPN

Planecut

Unfolding

Figure 13: Matrix Multiplication on the Cell

lytical model predicts correctly that the measured performance re-
sults on the target platform for the plane-cut transformation is bet-
ter than the unfolding transformation. The first bar corresponds to
the unmodified Kahn process network, which needs more than 200
million cycles to finish its execution. The plane-cut transformed
network is finished in 145 million cycles and the unfolding trans-
formation in 196 million cycles. Now we follow the same steps
and predict the results for the ESPAM platform. The metrics are
almost the same, except the costs for communication and computa-
tion. The communication costs are 10 clock cycles, the workload is
2000 cycles, and the iteration space is 20 × 20 × 20. We calculate
the values and we obtain Tplane ≈ 420000 and Tomod ≈ 402000.
Since the communication costs on the ESPAM platform are very
cheap, we observe that the initial delay of a partition is the deter-
mining factor here and the analytical model, therefore, predicts that
the modulo unfolding transformation leads to better performance
results. Figure 14, indeed, shows that for the measured perfor-
mance results, the unfolding is better than the plane-cut.

0

100000

200000

300000

400000

500000

600000

700000

C

yc
le

s KPN

Planecut

Unfold

unfold-opt

Figure 14: Matrix Multiplication on the ESPAM Platform

The first bar shows the results of the matrix multiplication mapped
as a Kahn Process Network onto the ESPAM platform. It is finished
in less than 700000 clock cycles. The second bar shows the result
for the plane-cut transformation, which is finished in 350000 cy-
cles. The third bar corresponds to the modulo unfolding, which is
worse than the plane-cut, but this is caused by the introduced addi-
tional control overhead for the modulo statements. When this over-
head is removed and the code optimized, denoted by unfold-opt in
the fourth bar, indeed we see that the unfolding transformation is
better. The model as we have defined it, captures well the influence
of inter- and intra-process communication and is able to correctly
predict which transformation is better for these cases.

4.3 Four Producers with Delays
In this experiment, we investigate the effects of production peri-

ods on different transformations. The production period of one pro-
ducer process is chosen to be much larger than the other producers
and in addition to this, the producer process workload is increased.
The experiment has been setup in this way, to see if the analytical
model under these conditions still correctly predicts the trend. The
Kahn process network used in this experiments is derived from the
nested loop program below:

for (i=2; i<100; i++)
for (j=0; j<100; j++)

x[i], y[j] = C(x[i], y[j], z[2*i][4*j], w[i][j]);

At each iteration, function C is executed and data is read from
different arrays. Arrays x and y are read at each iteration and also
new values are written into it. Thus, there are two self-dependences
for this function call statement. The third input argument array z is
indexed with expressions 2·i and 4·j. Consecutive read accesses at

38

the consumer process, map to iteration points at the producer pro-
cess which are not consecutive. For example, iterations (2, 0) and
(2, 1) of the consumer map to iterations (4, 0) and (4, 4) at the pro-
ducer. In this way, we model a producer process with a production
period that is different from the other processes. The fourth input
argument is array w, which is written and read at each iteration
of the producer and consumer. Furthermore, the first iteration of i
starts at 2, such that there is an initial delay for each of the produc-
ers. The corresponding KPN is shown in Figure 15 A). It consists
of 4 producer processes P1 ,P2 ,P3 , P4 and a single consumer C .
The networks for the unfolding and plane-cut transformations are
shown in Figure 15 B) and C), respectively.

P3 P4P2P1

C

P3P2P1 P4

C2

C1

P3P2P1 P4

C) Plane−cutA) KPN

C1

C2

B) Unfolding

Figure 15: Consumer(s) with 4 Producers

To determine which transformation is better, the solution tree in-
dicates that the transformations plane-cut on the inner loop and un-
folding on the outer loop must be compared as there are orthogonal
dependences in this example. It can be seen in Figure 15 C) that,
for the plane-cut transformation, the second partition C2 receives
data from processes P1 ,P2 , P4 ,C1 . The first iteration to be ex-
ecuted by the second partition C2 is iteration point (2, 50). Pro-
ducer process P1 generates data for this point at iteration (4, 200)
as a result of index expressions 2 · i and 4 · j at the consumer C2 .
Therefore, the initial delay is 4 · 400 + 200 = 1800 iterations with
regards to producer process P1. To calculate the production pe-
riod, we find that producer P1 executes 80.000 iterations and that
consumer C2 reads 4900 tokens from it. Therefore, the production
period is 80000

4900
≈ 16 iterations. For the other producer process, the

initial delays and production periods are calculated in a similar way
and are also shown in Table 4. For the unfolding transformation,
we see in Figure 15 B) that partition C2 depends on 5 producers.
To give an example of the initial delay calculation for this transfor-
mation, we consider the first iteration point (3, 0) of partition C2 .
This point is mapped to iteration point (6, 0) of the producer P1 ,
and hence the initial delay is 6 · 400 + 1 = 2401. The other de-
lays are 1201, 4, 1 and 1 iterations with respect to the remaining 4
producer processes, which is also shown in Table 4.

Metric planecut unfold (outer)
Y (DP1), .., Y (DP4), Y (DC1) 1800, 850, 0, 3, 3 2401, 1201, 4,1,1

Production Periods d 16, 16, 0, 2, 50 16, 16, 2, 1, 2
DTinter , DTintra 9652, 98 9700,4851
W (C2) 5680 5680
Cinter , Cintra 160,18 160,18

Table 4: Partition C2 and its Metric Values on the Cell

If we use these metric values to calculate and predict the execu-
tion times of the transformed KPNs, we obtain Tplane ≈ 37 million
and Tmod ≈ 39 million.

The measured performance results on the Cell platform confirm
that the compile-time hint is correct. The first bar in Figure 16
shows that the KPN is finished in 86 million cycles. The second
bar corresponds to the plane-cut transformation and is finished in
70 million cycles, and the third bar corresponds to the unfolding

0

10

20

30

40

50

60

70

80

90

100

cy

cl
es

 (
in

 m
ill

io
n

s)

KPN

Planecut

Unfolding

Figure 16: Results on the Cell

transformation which is finished in 76 million cycles. We observe
that, indeed, the plane-cut transformation is better compared to the
unfolding transformation. If we want to predict which transforma-
tion is better for the ESPAM platform, we repeat all steps. The
only difference are the metric values for writing/reading to/from
FIFO channels, and therefore we omit the metric values for this ex-
ample. If we compute the time for both transformations, we find
Tplane ≈ 34.75 million and Tmod ≈ 34.69 million. This predic-
tion indicates that the unfolding transformation should be applied
to minimize the execution time.

0

20

40

60

80

100

120

cy

cl
es

 (
in

 m
ill

io
n

s)
KPN

Planecut

Unfolding

Figure 17: Results on ESPAM Platform

The measured performance results on the ESPAM platform are
shown in Figure 17. The Kahn process network is finished in 110
million cycles, the plane-cut transformed network in 66 million cy-
cles, and the unfolded network in 64 million cycles. This confirms
the prediction that the unfolding transformation leads to better per-
formance results than the plane-cut.

5. RELATED WORK
In this paper, we presented the approach we have developed to fa-

cilitate the systematic and automated derivation of alternative KPN
specifications from static affine nested loop programs (SANLPs)
by applying Unfolding and Plain cut algorithmic transformations.
Our unfolding transformation is related to the loop unrolling tech-
niques used in compiler design [5]. The relation is in that both
transformations aim at enhancing parallelism in a sequential pro-
gram. However, loop unrolling enhances instruction level paral-
lelism by copying a loop body several times and re-indexing the
variables in the body, thus creating more parallel instructions and
reducing the loop control overhead. A prologue or epilogue is gen-
erated to guarantee that the unrolled version executes the correct
number of iterations of the original loop. In contrast, our unfolding
transformation enhances task-level parallelism by copying a loop
body a number of times in such a way that these copies are mutu-
ally exclusive, thus these copies can be encapsulated in concurrent

39

processes. Also, our unfolding transformation does not generate
prologue or epilogue code.

In [11], Sriram and Bhattacharyya describe an unfolding and re-
timing transformations used for improving block schedules for Ho-
mogeneous Synchronous Data Flow (HSDF) graphs by exploiting
inter-iteration parallelism. This is related to our unfolding and plain
cut transformations in the sense that the latter also facilitate the ex-
ploitation of inter-iteration parallelism available in a SANLP when
such program is converted to a set of KPN specifications. In [10],
Parhi and Messerschmitt describe a unfolding transformation de-
veloped to be applied on iterative data-flow programs. This trans-
formation is similar to our unfolding in that both transformations
increase the number of tasks in a program and unravel the hidden
concurrency for static programs. The main difference between our
work and the work presented in [11, 10] however, is that we have
devised an approach to evaluate the quality achieved by applying
the transformations when targeting a particular MPSoC platform.
As we showed in this paper, there are several factors that must be
taken into account when deciding what transformation to apply in
order to improve performance. In contrast, in [11] the transforma-
tions are applied on the HSDF graph corresponding to an applica-
tion where no information about the target implementation platform
is considered.

In [13], Teich and Thiele propose an approach to partition affine
dependence algorithms for mapping onto reduced/fixed size pro-
cessor arrays. Their approach is based on two transformations
called Expand and Reduce. Their work relates to our work pre-
sented in this paper in the sense that our approach to generate Kahn
Process Networks (KPNs) using our unfolding and plane cut trans-
formations is also an approach to partition algorithms. However,
there are two important differences. First, the result of the parti-
tioning, i.e., the generated KPNs are suitable for mapping onto het-
erogeneous multi-processor platforms. Second, by using our un-
folding and plane cut transformations to generate KPNs we do a
reverse partitioning compared to the approach of Teich and Thiele.
They start with a dependence graph (DG) representation of an al-
gorithm which is the partitioning of an algorithm that exploits the
maximum parallelism available in an algorithm. Then they apply
tiling (grouping) on the DG representation to obtain a desired par-
titioning in which less parallelism is exploited. In contrast, we start
with a SANLP where no parallelism is exploited and by unfolding
or plane cutting, we partition the computational workload of the
SANLP onto several processes. That is, in the proposed approach
we take into account the characteristics of a particular MPSoC tar-
get platform and evaluate the quality of different (possible) trans-
formations, thereby, obtaining a desired partitioning in which more
parallelism is exploited.

Kahn Process Networks are supported by the Ptolemy II frame-
work [4] and the YAPI environment [1] for concurrent modeling
and design of applications and systems. The designer has to spec-
ify manually the application as a Kahn Process Network and to give
this network as an input to the Ptolemy II or YAPI simulation and
verification engines. In many cases, manually specifying an appli-
cation as a Kahn Process Network is a very time consuming and
an error-prone process. Our work, presented in this paper, relates
to Ptolemy II and YAPI in the sense that it can be used as a front-
end tool by Ptolemy II or YAPI. This will significantly speedup the
modeling effort when Kahn Process Networks are used, and mod-
eling errors will be avoided because the proposed approach and the
techniques for applying our unfolding and plain cut transformations
guarantee correct-by-construction generation of Kahn Process Net-
works.

6. CONCLUSION
In this paper we have investigated a compile-time approach to

select a transformation in order to achieve the best possible perfor-
mance results. We defined the metrics that are required to make
such a decision, showed how the metric values can be calculated,
and presented a solution approach that uses these metric values to
evaluate the different transformations to give hints to the designer.
In the experiments we have seen that our model correctly predicts
which transformation can be applied best.

Acknowledgements
The authors would like to thank Ed Deprettere and Sven Verdoolaege
for their useful suggestions and comments on this work. This work
is partially funded by the MEDEA+ 2A703 NEVA project.

7. REFERENCES
[1] E. de Kock, G. Essink, W. Smits, P. van der Wolf, J.-Y. Brunel,

W. Kruijtzer, P. Lieverse, and K. Vissers. YAPI: Application
modeling for signal processing systems. In Proc. 37th Design
Automation Conference (DAC’2000), pages 402–405, Los Angeles,
CA, June 5-9 2000.

[2] P. Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20, 1991.

[3] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe,
and T. Yamazaki. Synergistic processing in cell’s multicore
architecture. IEEE Micro, 26(2):10–24, 2006.

[4] E. Lee et al. PtolemyII: Heterogeneous Concurrent Modeling and
Design in Java. Technical report, University of California at
Berkeley, 1999. UCB/ERL M99/40.

[5] S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, Inc., 1997.

[6] D. Nadezhkin, S. Meijer, T. Stefanov, and E. Deprettere. Realizing
fifo communication when mapping kahn process networks onto cell.
In SAMOS IX: International Symposium on Systems, Architectures,
MOdeling and Simulation, 2009.

[7] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system
design with espam. In CODES+ISSS ’06: Proceedings of the 4th
international conference on Hardware/software codesign and system
synthesis, pages 211–216, New York, NY, USA, 2006. ACM.

[8] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and
automated multiprocessor system design, programming, and
implementation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(3):542–555, 2008.

[9] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, and E. Deprettere. Daedalus: toward
composable multimedia mp-soc design. In DAC ’08: Proceedings of
the 45th annual conference on Design automation, pages 574–579,
New York, NY, USA, 2008. ACM.

[10] K. K. Parhi and D. G. Messerschmitt. Static Rate-Optimal
Scheduling of Iterative Data-Flow Programs via Optimum Unfolding.
IEEE Transaction on Computers, 40(2):178–195, Feb. 1991.

[11] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization. Marcel Dekker, Inc., 2000.

[12] T. Stefanov, B. Kienhuis, and E. Deprettere. Algorithmic
transformation techniques for efficient exploration of alternative
application instances. In CODES ’02: Proceedings of the tenth
international symposium on Hardware/software codesign, pages
7–12, New York, NY, USA, 2002. ACM.

[13] J. Teich and L. Thiele. Exact Partitioning of Affine Dependence
Algorithms. Lecture Notes in Computer Science (LNCS), Springer,
2268:133–151, 2002.

[14] A. Turjan. Compiling nested loop programs to process networks,
2007. PhD thesis, Leiden University, The Netherlands.

[15] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: a tool for improved
derivation of process networks. EURASIP J. Embedded Syst.,
2007(1):19–19, 2007.

40

