
IP-XACT Extensions for Reconfigurable Computing
Razvan Nane∗, Sven van Haastregt†, Todor Stefanov†, Bart Kienhuis†, Vlad Mihai Sima∗ and Koen Bertels∗

∗ Computer Engineering Lab, Delft University of Technology
Email: 〈r.nane, v.m.sima, k.l.m.bertels〉@tudelft.nl

†LIACS, Leiden University
Email: 〈svhaastr, stefanov, kienhuis〉@liacs.nl

Abstract—Many of today’s embedded multiprocessor systems
are implemented as heterogeneous systems, consisting of hard-
ware and software components. To automate the composition
and integration of multiprocessor systems, the IP-XACT standard
was defined to describe hardware IP blocks and (sub)systems.
However, the IP-XACT standard does not provide sufficient means
to express Reconfigurable Computing (RC) specific information,
such as Hardware dependent Software (HdS) meta-data, which
prevents automated integration. In this paper, we propose several
IP-XACT extensions such that the HdS can be generated and
integrated automatically. We validate these specific extensions
and demonstrate the interoperability of the approach based on
an H.264 decoder application case study. For this case study
we achieved an overall 30.4% application-wise speed-up and we
reduced the development time of HdS from days to a few seconds.

I. INTRODUCTION

A widely adopted practice within Reconfigurable Comput-
ing (RC) design is to accelerate part(s) of applications, using
custom hardware architectures, that are specifically tailored for
a particular application. These specialized architectures can
be Intellectual Property (IP) blocks written at the Register
Transfer Level (RTL) by a designer, or IP blocks generated
by a High Level Synthesis tool from a functional specification
written in a High Level Language (HLL) [7]. To cope with the
diversity of IP blocks coming from different sources, IP-XACT
[6] was introduced. Using IP-XACT, hardware components can
be described in a standardized way. This enables automated
configuration and integration of IP blocks, aiding hardware
reuse and facilitating tool interoperability [3].

In a Hardware/Software (HW/SW) system, connecting the
different HW and SW components, using for instance buses or
point-to-point connections, is not sufficient to fully implement
a system. Typically, a SW component connected to a HW
component needs a driver program, also known as Hardware
dependent Software (HdS) [1], to control the HW component.
IP blocks that can be controlled from a SW component are
typically shipped with particular HdS to ensure proper control
from SW. However, in RC systems, the IP blocks are auto-
matically generated by HW tool-chains for application kernels
selected for hardware acceleration. Therefore, the HdS driving
these new hardware blocks has to be generated automatically
as well. The compilation process in such RC systems, i.e.,
from HLL application source code to a combined HW/SW
executable, is done by different tools, such as partitioning,
mapping and HW/SW generation tools. This implies that there

is no central place from where the HdS can be generated. That
is, the compiler used to generate the IP has no knowledge
about what HW primitives are used for example to commu-
nicate data in the system, which prevents it from generating
a proper driver. This information is available, however, in the
partitioning and mapping tool. Therefore, we adopt a layered
solution in which different parts of the HdS are generated
at different points in the tool-flow. Furthermore, to allow the
tools involved in this HdS generation process to communicate
seamlessly with each other, we need to describe the software
requirements of each step in IP-XACT as well. One example of
such a software requirement is the number of function input
parameters. However, unlike the RTL constituents of an IP
block, which can be already described using the current IP-
XACT standard, there is no standardized way to describe the
driver information for an IP.

In this paper, we elaborate on the expressiveness of IP-XACT
for describing HdS meta-data. Furthermore, we address the
automation of HdS generation in the RC field, where IPs and
their HdS are generated on the fly, and therefore, are not fully
predefined. The contribution of this paper can be summarized
as follows:

• We combine two proven technologies used in MPSoC de-
sign, namely IP-XACT and HdS, to automatically integrate
different architectural templates used in RC systems.

• We investigate and propose IP-XACT extensions to allow
automatic generation of HdS in RC tool-chains.

The rest of the paper is organized as follows. Section II
presents IP-XACT, other HdS solutions, and already proposed
IP-XACT extensions. Section III describes a HdS generation
case study and investigates the IP-XACT support for automa-
tion. Section IV elaborates on the identified shortcomings and
proposes IP-XACT extensions to support software related driver
descriptions. Section V respectively Section VI validates the
automated integration and concludes the paper.

II. RELATED WORK

The IP-XACT standard (IEEE 1685-2009) [6] describes
an XML schema for meta-data modelling IP blocks and
(sub)systems. The meta-data is used in the development,
implementation and verification of electronic systems. In this
paper, we focus on Component schema for associating HdS to
HW IP blocks and we focus on Generator-Chain schema to
express compiler specific requirements. The current schema
provides limited support for software descriptions. Namely,

one can only attach software file-sets to a component and
describe the function parameter’s high level types. However, it
does not offer means to assign semantics to the attached file-
set and how it should be used during integration of a complete
system. Furthermore, it lacks means to model tool chains in
which complex software generators are to be integrated. In
Section IV, we propose solutions to these problems.

The OpenFPGA CoreLib [9] working group focused on
examining the IP-XACT Schema and proposed extensions for
facilitating core reuse into HLLs. Wirthlin et al. [10] used
XML to describe common IP block elements and defined
their own schema using IP-XACT syntax. They proposed a
lightweight version intended for Reconfigurable Computing
(RC) systems, such as interface specifications and capturing
HLLs data types information.

Other IP-XACT related research is focusing on extending the
schema to incorporate semantic information about IP elements.
Kruijtzer et al. [4], proposed adding context labels to provide
additional meaning to IP-XACT components. They use this
to assess the correctness of interconnections in the system.
Strik et al. [5] studied aspects regarding IP (re)configurability
to reuse these after a partial change of some parameters.
They underline that IP-XACT is missing expression evaluation
fields to support flagging illegal (sub)system composition.
However, all proposed extensions discussed so far in this
section consider only the HW IP block. As mentioned in
Section I, for systems involving both HW and SW, one also
needs to describe the HdS belonging to the HW IP to enable
automated integration of a system. Therefore, we propose
software related extensions for IP-XACT.

III. INTEGRATING ORTHOGONAL COMPUTATION MODELS

To investigate the IP-XACT capabilities to model HW/SW
co-design tool chains supporting HdS generation and tool
interoperability, we used an H.264 decoder application im-
plemented on an Field Programmable Gate Array (FPGA)
as a case study. The goal is to integrate different tools and
models such that we can automatically generate application
specific MPSoC implementations of sequentially specified ap-
plications. To realize this, we use the Daedalus [8] system level
synthesis tool set to implement an MPSoC from sequential
C code. In particular, from the Daedalus tool set we use
the PN compiler [13] to partition a sequential application
into Polyhedral Process Networks (PPN) and ESPAM [11]
to map the partitioned application onto an FPGA. Outside
the Daedalus tool-set, we use DWARV [7] to automatically
generate hardware IP blocks for performance critical parts of
the sequential C code. We first describe the problems observed
when integrating the two tools in Section III-A. Subsequently,
we present our extended framework in Section III-B.

A. IP Core Integration

In [12], the PICO compiler from Synfora Inc. [14] was
incorporated in the Daedalus tool-flow. This approach was
used to achieve higher performance for PPN implementations
by replacing computation intensive nodes with functionally

DWARVDWARV

P1P1

P2P2

P3P3

ESPAMESPAM

FPGA

back endback end

HdS
 1

HdS
 1

HdS
2&3
HdS
2&3

IP-X
ACT
IP-X
ACT

IP-X
ACT
IP-X
ACT CC

CCUCCU

front endfront end

HdS
1

HdS
1

PNPN
seq.
C

code

seq.
C

code

Fig. 1: H.264 Generation Tool-Chain Flow.

equivalent hardware IP cores generated by PICO from the
available C code. The replacement was done smoothly, as both
tools were operating under the same memory model, i.e., a
distributed memory model. However, several restrictions were
imposed on the C code which can be processed by the PICO
compiler. For instance, each loop body could contain only one
other loop. Therefore, using PICO as the hardware compiler
was not feasible for the H.264 application where multiple
nested loops are present. DWARV is a compiler which has
less restrictions than PICO, making it suitable for generating
hardware blocks for our case study.

However, integration of a Custom Compute Unit (CCU),
generated by DWARV, in a PPN created by Daedalus is
not straightforward. The CCU has an interface suitable for
interacting with Molen [2] based platforms, which employ a
shared memory model. The PPN node, on the other hand, into
which the CCU has to be integrated, has multiple input and
output FIFO channels typical for the stream-based distributed
memory model. The challenge therefore is to find a way to
specify the requirements for Daedalus such that DWARV can
automatically generate the correct interface.

B. Framework Solution

We show our solution in Fig. 1. We use the PN compiler
to create a PPN from the sequential C code of the H.264
top level function. Subsequently, we use ESPAM to implement
the H.264 PPN as a system of point-to-point connected Mi-
croBlaze processors on an FPGA, as shown in the left part
of Fig. 1. This means the functional part of each process is
implemented as a software program running on a MicroBlaze.
Based on profile information we have decided to accelerate
the Inverse Discrete Cosine Transform (IDCT) process using
a specialized hardware component. We use the DWARV C-
to-VHDL compiler to generate a CCU from the C code
of the IDCT function, which requires the C function to be
communicated from ESPAM to DWARV.

To solve the interface mismatch problem between DWARV-
generated CCUs and Daedalus’ PPNs, DWARV generates a
wrapper for the CCU. This wrapper provides memory to the
CCU which stores the input/output channel data before/after
the CCU is started/stopped.

CCUCCU

MicroBlaze
processor

MicroBlaze
processor

Communication with
other processes

Hardware dep. Software (HdS)Hardware dep. Software (HdS)

Layer 3: user functions
 idct()

Layer 3: user functions
 idct()

Layer 2: device operations
 ccu_load_arguments()
 ccu_start()

Layer 2: device operations
 ccu_load_arguments()
 ccu_start()

Layer 1: low level operations
 send_command()
 read_obus()

Layer 1: low level operations
 send_command()
 read_obus()

IMEMIMEM

DMEMDMEM CPI

shared
memory

bus

Fig. 2: Connection between CCU and processor (left) and
HdS layers (right). IMEM is the instruction memory of the
processor, while DMEM is the data memory that is shared
between both the processor and the CCU.

The HdS controlling the CCU is structured into three
different layers. The right side of Fig. 2 shows the HdS
hierarchy. We distinguish platform primitives (layer 1), IP-
and OS-specific driver code (layer 2) and an application layer
(layer 3). The primitives in layer 1 strongly depend on the
processor the HdS is running on, and the way the CCU is
connected to the processor running the HdS. For instance,
for one processor these primitives use memory-mapped I/O,
whereas for another processor dedicated instructions are avail-
able. This information is known only by ESPAM. Therefore,
the HdS layer 1 primitives are generated by ESPAM. HdS layer
2 provides functions that control the CCU by sending and
receiving commands and data to and from the CCU using the
primitives provided by layer 1. The separation of HdS layers
1 and 2 makes the HdS layer 2 code independent of the actual
platform. HdS layer 3 provides user level functions, which are
invoked by a user application to perform the task for which the
CCU was designed. The functions in layer 3 only use functions
provided by HdS layer 2. The HdS layer 3 function(s) provide
a transparent interface to the CCU, essentially making the
CCU available as a regular software function.

IV. IP-XACT EXTENSIONS

In this section, we elaborate on the expressiveness of the
current IP-XACT standard to describe the scenario presented in
the previous section. Based on this analysis, we describe three
possible extensions, namely hardware compiler input, HdS
and tool-flow integration related extensions. We implemented
the proposed extensions using the vendorExtensions extension
construct that is already part of IP-XACT. This allows vendor
specific information to be added to IP-XACT descriptions.

A. Hardware Compiler Input

The DWARV compiler accepts a C function as input and
generates a VHDL component that implements the original C
function. In our case study, we send the C function together
with an IP-XACT metadata description to DWARV. DWARV

<spirit:function>
<spirit:entryPoint>send_data</spirit:entryPoint>
<spirit:fileRef>f-hds1_h</spirit:fileRef>
<spirit:returnType>void</spirit:returnType>
<spirit:argument spirit:dataType="int">
<spirit:name>data</spirit:name>
<spirit:value>0</spirit:value>

</spirit:argument>
<spirit:vendorExtensions>
<spirit:hdstype>write</spirit:hdstype>

</spirit:vendorExtensions>
</spirit:function>

Fig. 3: HdS IP-XACT extensions for layer 1.

assumes that a function argument can be both input and
output at the same time, if the argument is a pointer into
shared memory. However, arguments to functions inside a PPN
process are always unidirectional. For each function argument,
unidirectional First In, First Out (FIFO) channels are created
according to the process network topology. Therefore, we
need to inform DWARV about the direction of each function
argument, such that the appropriate FIFO input or output
connection can be generated. We therefore add a direction
field to the IP-XACT description that is passed along with the
C file defining the function implementation. The values this
field can take are: in, out and inout.

B. Hardware Dependent Software

Using HdS in heterogeneous MPSoCs abstracts hardware
and OS details away from the application level. In our case
study, we have partitioned the HdS into three different layers,
as described in Section III-B. HdS layer 1 is generated by
the Daedalus environment and then passed to DWARV. This
enables DWARV to generate HdS layers 2 and 3 that make use
of the primitives provided by HdS layer 1.

To create a semantic link between two different HdS layers,
we need to specify the purpose of the functions found in HdS1.
For HdS layer 1, we classify a function as read, write or
command. An example of such a description in IP-XACT is
shown in Fig. 3. The read identifier classifies the function
as one that reads data from the CCU-Processor Interface
(CPI), which has been implemented using two small FIFO
buffers. The write identifier classifies the function as one that
writes application data to the CPI and the command identifier
classifies a function as one that writes control data to the CPI.
Because hardware primitives are typically limited in number,
we define a new IP-XACT type HdS type to establish a
semantic link between layers 1 and 2.

Similarly, we can create a link between layers 2 and 3.
However, layer 2 is concerned with abstracting OS specific
implementation details for the custom IP block, and since there
is no OS present in our case study, we leave the definition of
this type as future work. Nevertheless, we imagine that this
type could include identifiers for the POSIX standard such as
opening and closing file handles.

C. Tool Chains

To fully automate the tool flow shown in Fig. 1, IP-
XACT provides means to model generator chains. For example,
the current IP-XACT standard provides a generatorExe field

which contains the executable to be invoked for a generator.
However, we observe that IP-XACT currently lacks a way
to describe the tool-specific configuration files. For example,
DWARV uses an external Floating Point (FP) library descrip-
tion file listing the available FP cores, such that floating point
arithmetic in the C code can be implemented using available
FP cores. To allow seamless cooperation of different tools from
different vendors, we observe the need to include tool-specific
descriptions and files in IP-XACT generatorChain schema.

V. EXPERIMENTAL RESULTS

In this section, we report on two kinds of results. First,
we show the applicability and usefulness in a real world
application and second, we report the overall productivity gain.
We base this on our experience with the H.264 case study, for
which the first implementation was done manually.

A. Validation of Approach
In our experiments, we target a Xilinx Virtex-5

XC5VLX110T-2 FPGA and use Xilinx EDK 9.2 for
low level synthesis. We use QCIF (176x144 pixels) video
resolution and a 100 MHz clock frequency. To validate
the approach, we implement the H.264 decoder application
twice. The first time we map all processes of the PPN onto
MicroBlaze processors, which means all PPN processes
are implemented as software. This serves as our reference
implementation. The second time we replace the software
IDCT node with a hardware version obtained using the
methodology described in the previous sections. We obtain a
speed-up of approximately 30.4%.

B. Productivity Gain
Besides proving the usefulness of the approach to obtain a

faster implementation of a PPN, we discuss the productivity
gain observed when adopting an automated IP-XACT based
approach. If the automated support was not available, manually
patching the tools would have been time consuming and error-
prone. Depending on the application knowledge of the system
designer and application complexity, activities like writing the
HdS or the CCU wrapper can take from a few hours up to
even weeks. Moreover, validation may take a similar amount
of time. For example, a memory map has to be specified as
C code in the HdS and as VHDL in the RTL. For correct
operation of the system, these two representations need to be
fully consistent, which may be an important source of errors
when manual action is involved. We eliminate such errors by
taking the information from a central source (e.g., an IP-XACT
description) and then automatically generate the different
representations. This substantially reduces the time needed
for validation. To fully understand the specific challenges and
properly design the modifications required by the tools to
enable automated integration, our first implementation of the
system was manual. Based on this experience, we estimate
that building a fully working system for the H.264 decoder
application by hand would take one week. Using the approach
described in this work, one could obtain a working system in
less than an hour, which is a considerable gain in productivity.

VI. CONCLUSION

In this paper, we have presented a new approach for
automated generation of RTL implementations from sequential
programs written in the C language. This is achieved by
combining the Daedalus framework with the DWARV C-to-
VHDL compiler with the aid of the IP-XACT standard. With
these concepts, even different architectural templates can be
reconciled. We investigated the capabilities of the IP-XACT
standard to model automated integration of MPSoCs consist-
ing of both hardware and software components. We found
that the Hardware Dependent Software needed to control the
hardware component cannot be described in the current IP-
XACT standard. We identified three possible concepts that
could be added as extensions to the IP-XACT standard to
realize automated integration of HW/SW systems. Using an
H.264 video decoder application we verified our approach.

ACKNOWLEDGEMENTS

This research has been funded by the projects SoftSoC
PNEI082007, Smecy 100230, iFEST 100203 and REFLECT
248976.

REFERENCES

[1] S. Yoo, M. Youssef, A. Bouchhima and A. Jerraya. Multi-Processor
SoC Design Methodology Using a Concept of Two-Layer Hardware-
Dependent Software. In Design Automation and Test in Europe
(DATE’04).

[2] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov and
E. Panainte. The molen polymorphic processor. In IEEE Transactions on
Computers (November 2004).

[3] J. Wilson et al. Industrially Proving the SPIRIT Consortium Specifications
for Design Chain Integration. In Proc. of Design, automation and test in
Europe (DATE ’06). pages: 142 - 147.

[4] W. Kruijtzer, E. de Kock, J. Stuyt, W. Ecker and E. Vaumorin. Industrial
IP Integration Flows based on IP-XACT Standards. In Proc. of Design,
automation and test in Europe (DATE ’08). pages: 32 - 37.

[5] M. Strik , A. Gonier and P. Williams. Subsystem Exchange in a Con-
current Design Process Environment. In Proc. of Design, automation and
test in Europe (DATE ’08). pages: 953 - 958.

[6] IP-XACT IEEE 1685-2009 Standard. [Online] Available:
http://www.accellera.org/

[7] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, J. Lu and S.
Vassiliadis. DWARV: Delft Workbench Automated Reconfigurable VHDL
Generator, In Field Programmable Logic and Applications (FPL’07).

[8] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, E. Deprettere”. Daedalus: Toward Composable Multime-
dia MP-SoC Design, In Proc. of the Design Automation Conference
(DAC’08), June 2008.

[9] M. Wirthlin et al., OpenFPGA CoreLib core library interoperability effort,
In Parallel Computing journal (May 2008), Vol 34, pages: 231-244.

[10] A. Arnesen, N. Rollins and M. Wirthlin, A Multi-Layered XML Schema
and Design Tool For Reusing and Integrating FPGA IP, In Field Pro-
grammable Logic and Applications (FPL ’09). pages: 472 - 475

[11] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and Automated
Multi-processor System Design, Programming, and Implementation. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 27, no. 3, March 2008.

[12] S. van Haastregt and B. Kienhuis. Automated Synthesis of Streaming C
Applications to Process Networks in Hardware. In Design, Automation
and Test in Europe (DATE’09). pages: 890 - 893.

[13] S. Verdoolaege, H. Nikolov and T. Stefanov. PN: a Tool for Improved
Derivation of Process Networks. In EURASIP Journal on Embedded
Systems, vol. 2007, Article ID 75947.

[14] Synphony C Compiler. PICO Technology. [Online] Available:
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-
Compiler.aspx

