
Customizing Reconfigurable On-Chip Crossbar Scheduler

Jae Young Hur1, Todor Stefanov2, Stephan Wong1, and Stamatis Vassiliadis1

1 Computer Engineering Lab., TU Delft, The Netherlands
http://ce.et.tudelft.nl

2 Leiden Embedded Research Center, Leiden University, The Netherlands
http://www.liacs.nl

Abstract

We present a design of a customized crossbar sched-
uler for on-chip networks. The proposed scheduler ar-
bitrates on-demand interconnects, where physical topolo-
gies are identical to logical topologies for given applica-
tions. Considering conventional fully parallel and sequen-
tial schedulers as reference designs, a comparative perfor-
mance analysis is conducted. The hardware scheduler mod-
ule is implemented with parameterized arbiter arrays. Ex-
periments for practical applications show that the crossbar
network with our custom scheduler realizes on-demand traf-
fic patterns, occupies on average 52% less area and main-
tains higher performance, compared to the crossbar net-
work with the fully parallel scheduler. Additionally, our
custom scheduler performs significantly better than the se-
quential scheduler with moderate area overheads, for small
sized tokens communicated over large networks.

1 Introduction

It is a well-known fact that a crossbar network provides
high performance, minimum network latency, and mini-
mum network congestion. The non-blocking dedicated na-
ture of communication and the relatively simple implemen-
tation makes the crossbar popular as an internet switch [1].
A typical crossbar consists of a scheduler and a switch fab-
ric. A commercial crossbar typically accommodates an ar-
biter per port and each arbiter concurrently schedules the
incoming packets [2]. The scheduler plays a key role on
the network performance and becomes more important as
the size of the network increases. In these fully parallel
schedulers, all-to-all connections are required to be accom-
modated, since traffic patterns are in most cases unknown.
Nevertheless, a major bottleneck of the fully parallel sched-
uler is the high cost due to increasing amount of wires as
the number of ports grows. Figure 1 depicts the area of the
iSLIP crossbar scheduler [2], which is widely used for the
commercial crossbar switches. As the number of ports in-
creases, the area of the scheduler increases in an unscalable

manner. This is mainly because the topology of intercon-
nects inside the scheduler module is all-to-all. The cross-
bar scheduler is also an important basic building block for
modern networks-on-chip (NoC) [3]. The scheduler in the
on-chip router also accommodates all-to-all connections. In
many cases, the schedulers for NoCs are sequential. In
other words, a single arbiter serves only single port at a
time. Consequently, performance degradation is the result
especially for larger crossbars. This work alleviates these
scalability problems by utilizing on-demand topologies in a
NoC-based reconfigurable platform. We are motivated by
observations that communication patterns of different ap-
plications represent different logical topologies. In mod-
ern NoC platforms, the logical topology information can be
known from the parallel application specification. The ap-
plications in most cases require only a small portion of all-
to-all communications. Figure 1(2) depicts realistic applica-
tions indicating that the required topologies are application-
specific and much simpler than all-to-all topologies. More-
over, a single application can be specified differently as we
observe in the MJPEG specifications.

(1) Area of iSLIP scheduler [2] (2) Parallel application specifications

0

100

200

300

400

500

600

700

4 8 16 32 64 128

Number of gates (x1000)

(2c) Wavelet

Video

in

DCT
Q

DCT

Q

DCT
Q

DCT
Q

VLE
Video

out

(2b) MJPEG(2a) MJPEG

Init

Copy
Copy

HPF Copy
LPF

Copy

Copy

HPF

Copy

Copy

LPF

Copy
Copy

HPF

Copy

Copy

LPFSink

Sink

Sink Sink

Video
in

DCT

Q

VLE

Video
out

Number of ports

Figure 1. Motivational examples.

In this work, we present a systematic design, an analysis,
and an implementation of a novel application-specific cross-
bar scheduler. Our scheduler arbitrates only the necessary
interconnects, instead of all-to-all interconnects. The pre-

sented scheduler combines the high performance of a fully
parallel scheduler and the reduced area of customized inter-
connects. The main contributions of this work are:

• We propose a custom scheduling scheme, where phys-
ical topologies are identical to arbitrarily specified log-
ical topologies for an application.

• We perform a comparative queueing analysis for dif-
ferent scheduling schemes.

• An experiment on realistic applications shows that the
central crossbar network with our scheduler performs
better and occupies 52% less area, compared to the
crossbar network with a fully parallel scheduler.

• An experiment shows that our scheduler performs sig-
nificantly better with moderate area overheads, com-
pared to a sequential scheduler.

The organization of this paper is as follows. In Section
2, related work is presented. Scheduler designs and the per-
formance analysis are described in Sections 3. In Section
4, the hardware implementation and results are presented.
Finally, conclusions are drawn in Section 5.

2 Related Work

Our work is based upon the general approach for on-
demand reconfigurable networks [4]. In this paper, we
present a custom crossbar scheduler utilizing on-demand
reconfigurable interconnects. Numerous NoCs targeting
ASICs (surveyed in [3]) employ rigid underlying physical
networks. Typically, packet routers constitute tiled NoC ar-
chitectures and each packet router accommodates a cross-
bar switch fabric and a scheduler for internally all-to-all
physical interconnects. Our scheduler is different from the
schedulers in ASIC-targeted NoC routers, since our net-
work topology is reconfigurable on demand and our sched-
uler utilizes the reconfigurability. NoCs targeting FPGAs
(for example, [5][6][7]) employ fixed topologies defined
at design-time. The topology is defined by the intercon-
nections between routers and the crossbar inside the router
also accommodates internally all-to-all physical intercon-
nects. Our approach is different from these NoCs, since
our centralized scheduler accommodates on-demand inter-
connects. The scheduler in [6] accommodates an arbiter
per port, which is similar to our approach. In [6], sin-
gle 2D-mesh packet router for an 8-bit flit occupies 352
slices and 10 block memories (BRAMs) in a Virtex-II Pro
(xc2vp30) device. Our work is close to [7], in which a
topology adaptive parameterized network component is pre-
sented. While the crossbar interconnects inside a router of
[6][7] are still all-to-all, the physical topology of our cross-
bar interconnects is identical to the logical topology of the
application. Finally, our custom scheduling scheme differs
from traditional traffic-specific scheduling schemes, such as
a weighted round-robin, in that our scheduler does not arbi-
trate unnecessary interconnects.

3 Customized On-Chip Crossbar Scheduler

As mentioned earlier, our objective is to systematically
design a topologically on-demand reconfigurable crossbar
scheduler in order to reduce the area of a fully parallel
scheduler and increase the performance of a sequential
scheduler. A crossbar scheduler is also required to dy-
namically generate the control signals to instantly configure
switch fabrics. Our system is based on the Kahn Process
Network (KPN) model of computation, where a KPN is a
network of concurrent processes that communicate over un-
bounded FIFO channels and synchronize by a blocking read
on an empty FIFO. However, the presented design tech-
niques also can be utilized in other systems.

3.1 Reference Scheduling Schemes

We consider a conventional sequential scheduler (SQS)
and a fully parallel scheduler (FPS) as references to com-
pare our custom scheduler with. Figure 2 depicts the SQS,
FPS, and the proposed custom scheduler for the application
in Figure 1(2a). Figure 2(1) depicts a topology after a port-
mapping and a corresponding system model. In our system,
the crossbar network transfers therequests(from proces-
sors) anddata (from FIFOs). Figure 2(2) depicts possible
request patterns, where 4 processors request to 4 FIFOs as
an example. For the sake of simplicity, the data is assumed
to be requested in the first cycle. The arbiter is also as-
sumed to perform a circular round-robin arbitration in the
order of P1,P2,P3 and so on. After the arbitration, a link
between a processor and a FIFO port is established using
a handshaking protocol, which is assumed to take 2 cycles.
The bold lines represent actual data transmission, which is
assumed to take 10 cycles. Figure 2(3) depicts the behav-
ior of a typical SQS, where one FIFO port is arbitrated at
a time by a single scheduler. A request is served after a
request in the previous port index is arbitrated and/or the
link is established. Subsequently, 24 cycles are required in
total, as depicted in Figure 2(3). Figure 2(4) depicts our im-
plemented FPS, where homogeneous arbiters are located in
each port. Each arbiter checks for all ports whether there is
a request or not. Consequently, all-to-all interconnects are
established and 19 cycles are required in total, as depicted
in Figure 2(4). Our FPS implementation is similar toiSLIP
scheduler [2], in that circular round-robin pointer is updated
when the request is granted. The round-robin pointer indi-
cates the currently served processor port. TheiSLIP sched-
uler is designed for the input-queued packet switch. How-
ever, our FPS differs from theiSLIP scheduler in the follow-
ing ways. First, our FPS has been implemented for on-chip
multiprocessor systems with distributed memories. Second,
while theiSLIP scheduler [2] requires two stages of arbiter
arrays, our FPS requires a single stage of arbiter arrays. As
Figure 2(4) depicts, FPS performs better than SQS, since
the concurrent requests can be served in parallel.

1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 2324 25

R G

R

R

G

G

R

R

R

G

G

G

R : data requested G : request granted () : current served port : data transfer

cycles

P1

P2

P3
P4

P1

P2

P3

P4

R

R

R

G

G

G

P1

P2

P3

P4

(1)

(1) (2)

(1) (2) (3)

(2)

(2)

(2)

(3)

(4) Full parallel

(5) Custom parallel

R G

P6
P5

R GP5 (1) (2)(3)(4)

P6
(5)

R GP5 (5)

P6

(2) Data request

scheme

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

F
I
F

O
s

P
r
o
c
e
s
s
o
r
s

P1 P2 P3 P4P5 P6FIFO port

F
I
F

O
s

F
I
F

O
s

F
I
F

O
s

(3)

(4)

(3)

(6)

(6)

(6)

(6)

(3) Sequential

(2)

(3)(4)(5)(6) (1)

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

F
I
F

O
s

P
r
o

c
e
s
s
o

r
s

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

F
IF

O
s

P
r
o

c
e
s
s
o

r
s

P1 P1

P2 P2

P3 P3

P4 P4

P5 P5

P6 P6

F
IF

O
s

P
r
o

c
e
s
s
o

r
s

P1
P2
P3
P4
P5
P6

FIFOs

P
r
o
c
e
s
s
o
r
s

P1 P2 P3 P4 P5 P6

(1) System model

Interconnection

network

request
dataP1

P2

P3

P4

P5

P6

Figure 2. Different scheduling schemes.

3.2 Proposed Custom Scheduler

Our custom parallel scheduler (CPS) scheme is similar
to the FPS in that the scheduler consists of arbiter arrays.
In our CPS, however, the round-robin pointer update oper-
ation is performed only for on-demand interconnects. We
exploit the fact that the application is specified by a point-
to-point graph, in which each node has possibly a different
number of connected links. As a design technique, each
arbiter is parameterized with respect to the logical topol-
ogy. Application-specific and differently sized arbiters en-
sure that the topology of the physical interconnects is iden-
tical to the logical topology specified by the application par-
titioning. Given the logical topologies from the application
specifications, our CPS operates as follows:

1. Request: A processor issues a request, by designating
the target FIFO port and FIFO index.

2. Validate: If there is a request in the round-robin pointer
and the target FIFO port is idle, the request is validated.

3. Establish: The target FIFO status is checked. If the
target FIFO is not empty, the request is accepted and
the channel is established. The round-robin pointer
is updated to the one that appears next in a round-
robin schedule, where the round-robin schedule is de-
termined bythe topology of an application.

If the pointed request is aClear Request, the channel is
cleared. If there is no request, the round-robin pointer is

also incremented. Figure 2(5) depicts the scenario of the
CPS. Each arbiter checks if there is a request for required
links. As an example, P2 has two probable requests in total,
from P2 and P6. Therefore, the CPS arbiter at P2 searches
for only two links. Note that an FPS arbiter at each port
searches for 6 links. As Figure 2(5) indicates, only 15 cy-
cles are required. In general, CPS performs better than FPS,
since the request search space of CPS is a subset of the full
search space of the FPS. Moreover, area reduction also can
be expected, since on-demand links are physically estab-
lished. Additionally, CPS performs significantly better than
SQS, since the arbitration is performed in parallel. In many
cases, CPS occupies more area than SQS. The area over-
head issue is discussed in Section 4.

3.3 Performance Analysis
We have formulated a network delay model to compare

the relative performance. Our analysis is based on the queu-
ing model [11], since the queuing model provides a rea-
sonable fit to the reality with relatively simple formulation.
Based on the general queuing model, the following assump-
tions were made. First, our system network conforms to the
Jackson model [11]. Each queue behaves as an independent
single server and the total network latency can be modeled
as the combination of each service latency. Second, each
server is analyzed by an (M/M/1) queuing model. In other
words, the incoming traffic obeys the Poisson distribution.
The data arrivals occur randomly and are independent one
another. Additionally, the service time distribution is ex-
ponential. Third, if the server is idle, a data in the queue
is served immediately. The queue size is large enough to
avoid the stall of the data flow. The Jackson’s open queue-
ing model is based on the network of queues [11] and can be
suitably applied for our system due to the following facts.
First, our KPN model and actual system are indeed a net-
work of queues. Second, the incoming data stream pattern
is statistically random. Third, token in the FIFO is indepen-
dently served by single scheduler (or server) at each cross-
bar port. In this work,tokenrefers to a set of data words,
which is a primitive communication unit. Consequently, the
general network latency can be modeled as

Tnetwork =
1
λ

M∑

i=1

λi

µi − λi
, (1)

whereTnetwork is the total latency of the crossbar system
network. M is the number of queueing systems.λ is the
total incoming arrival token rate to the network (or outgoing
rate from the network).λi is the incoming arrival rate to the
ith queue. µi is the service rate of the arbiter in theith

queue.
µi = (Tarbit + Ttransmit)−1, (2)

where Tarbit is the round-robin arbitration latency to es-
tablish a link. Ttransmit is the actual data transmission la-

tency after the link is established.Ttransmit can be derived
as Num Word

Clksys
, whereNum Word refers to the number of

data words, or the token size.Clksys refers to the system
clock frequency. We can fairly compare different schedul-
ing schemes, since the arbitration latencies are only differ-
ent. Tarbit for different schedulers can be approximated as
follows:

Tarbit SQS = k1 (b#ports
2

c × Thand) /(Clksys) (3a)

Tarbit FPS = k2 (b#ports
2

c + Thand) /(Clksys) (3b)

Tarbit CPS = k3 (b#links
2

c+ Thand) /(Clksys), (3c)

whereTarbit SQS refers to the arbitration latency (in sec-
onds) for SQS.k1, k2, k3 are the scaling factors to calibrate
the hardware implementation. The request check latency
is modeled byb #ports

2 c cycles. We divide by 2, since the
circular round-robin pointer is statistically located in the
middle of the search space. In the SQS, there is only one
arbiter in the system. Only after the requested link is es-
tablished using the handshaking protocol for the currently
served port, the next port is served. Therefore, we model
these sequential operations by multiplying the handshak-
ing latencyThand by b #ports

2 c. Tarbit FPS refers to the ar-
bitration latency for each port in the FPS. Since multiple
requests can be concurrently served, we model these par-
allel operations by adding theThand. In the FPS, the ar-
biter at each port obliviously checks for all ports. The re-
quest check latency is modeled byb #ports

2 c cycles, similarly
to the SQS.Tarbit CPS refers to the arbitration latency for
the CPS. Similarly to the FPS, we model the single server
latency by adding theThand. However, the request check
latency is modeled byb #links

2 c, since the actual arbitration is
performed for the only required links, instead of all links.
#links is equal or less thanp. Therefore, it is obvious that
Tarbit CPS is less thanTarbit SQS and Tarbit FPS . Only
if the required topology is all-to-all, then theTarbit CPS is
equal toTarbit FPS .

3.4 Case Studies
As a case study, we consider the MJPEG application in

Figure 1(2a). The port-mapped system model is depicted
in Figure 3(1). ConsideringP1 as a streamed data source,
P1 generates the data in a rate ofλ (tokens/s). A token rate
in each queue is derived fromYapiprofiler [8], as depicted
in Figure 3(1). Figure 3(2) depicts a scheduler model for
CPS and total network latencies can be derived, as depicted
in Figure 3(3). The service rates for different scheduling
schemes are derived as follows. We assume that the system
operates at 100MHz andk1, k2, k3 are 1.Thand is assumed
to be 2 cycles, since each of the request and the acknowl-
edgement requires 1 cycle, respectively.Ttransmit is as-
sumed to be 1 cycle per word. The service rateµs for each

(3) Performance analysis

μc1

μc2

μc3

μc4

μc5

μc6

Note

Token size = 1 word
System clock frequency = 100MHz

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

queueing system

32λ/1291

2
3

4
5

6

7

8

9

10

11

12

13

14

λ
λ

λ

(1) Network of queues

P1

P2

P3

P4

P5

P6

1

2

9

4

5

7
3

10

11

12

13

14

legend

(2) Custom parallel scheduler

request data

Video

in

Video

out

8

6

32λ/129

32λ/129

32λ/129

32λ/129

32
λ/
12
9

32λ/
129

32λ/129
32λ/129

λ/129

32λ/129
32λ/129

32λ
/129

32
λ/
12
9

32λ/129

32λ/129
32λ/129
λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129

32λ/129

λ

6
6 6

32

1 129 12912
32 14.3 10

14.3 10 14.3 10
129 129

SQS
T

λ λ

λ

λ λλ λ

= × + +
× − × − × −

6
6 6 6

32 32

1 129 129 1294 8
32 32 33 10

20 10 20 10 25 10
129 129 129

CPS
T

λ λ λ

λ

λ λ λλ λ

= × + + × +
× − × − × − × −

6
6 6

32

1 129 12912
32 16.7 10

16.7 10 16.7 10
129 129

FPS
T

λ λ

λ

λ λλ λ

= × + +
× − × − × −

Figure 3. A case study.

port in the SQS is the same. Considering the single-word
token communications, orNum Word = 1, µs can be de-
rived by 100MHz

(3×2+1)cycles = 14.3×106 tokens/s from Equation
(3a). Similarly, each service rateµp for the FPS can be de-
rived by 100MHz

(3+2+1)cycles = 16.7×106 tokens/s from Equation
(3b). Each service rateµc for the CPS is determined by the
topology. µc1 is 100MHz

(2+2+1)cycles = 20×106 tokens/s, since 5

links are established, orb 5
2c = 2. Similarly,µc2, µc3, µc4,

µc5 is 100MHz
(1+2+1)cycles = 25× 106 tokens/s. Finally,µc6 is

100MHz
(0+2+1)cycles = 33×106 tokens/s. Note that only a single
link is necessary for port 6, indicating that no arbitration
is necessary. As a result, the network system latencies are
derived and shown in Figure 4(1a). The performance anal-
ysis indicates that the CPS performs over 44% better than
SQS and at least 34% better than the FPS for all token rate
ranges. Also, the performance is better improved as the to-
ken rate increases. Moreover, our CPS is3× better than
SQS and2× better than FPS in terms of throughput. Fig-
ure 4(1b) depicts the case study for a large token size with
Num Word=64. The CPS performs at least 5% better than
SQS and 3.3% better than FPS for all ranges. The perfor-
mance improvement is smaller than the case of single-word
token transactions, sinceTtransmit is a dominant factor for
the network latency, compared toTarbit.

Similarly, the network latencies for the 22-node Wavelet
application, depicted in Figure 1(2), are derived. As the
number of crossbar ports increases,Tarbit for SQS and FPS
proportionally increases. However,Tarbit for CPS does not
increase, since the average number of ports for the round-
robin pointer is 1.6. In other words, on average 1.6 ports
are only required to be arbitrated by an arbiter, instead of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 8 16 24 32

Token rate (X10
6
 tokens/s)

CPS
FPS
SQS

0

3

6

9

12

15

0 500 1000 1500

Token rate (X10
3
 tokens/s)

CPS
FPS
SQS

0

0.4

0.8

1.2

1.6

2

0 15 30 45 60 75

Token rate (X10
6
 tokens/s)

CPS
FPS
SQS

0

3

6

9

12

15

0 900 1800 2700 3600

Token rate (X10
3
 tokens/s)

CPS
FPS
SQS

Network latency (us) Network latency (us) Network latency (us) Network latency (us)

(1a) Token size = 1 word (1b) Token size = 64 words (2a) Token size = 1 word (2b) Token size = 64 words

(1) 6-node MJPEG application in Figure 1(2a) (2) 22-node Wavelet application in Figure 1(2c)

Figure 4. Network performance.

22. Figure 4(2a) depicts the network latency for single-
word token transactions. The network latency is reduced
at least 84% compared to SQS and at least 73% compared
to FPS. Our CPS also provides significantly higher through-
put. Figure 4(2b) depicts the network latency for 64-word
token transactions. CPS performs at least 22% better than
SQS and 13% better than FPS. It can be suggested that our
CPS scheme is more beneficial for small sized tokens com-
municated over large networks.

4 Implementation and Results

The afore-mentioned scheduler modules have been im-
plemented in VHDL to integrate the presented network
components in the ESPAM design environment [10]. The
CPS module is implemented with parameterized arbiter ar-
rays. The scheduler module is generic in terms of data
width, number of ports, and logical topologies. The arbiter
is implemented with a three-state finite state machine, as
described in Section 3.2. The switch module in [9] is used
as a common interconnects fabric and the communication
controller in [10] is used as a common network interface.
The functionality of the network is verified by VHDL sim-
ulations. From the implementation,k1 = k2 = k3 = 1 have
been obtained for Equation (3). The crossbar network with
our scheduler has been implemented with the following spe-
cific steps. First, the schedule information is extracted from
the application specifications. Figure 5(1) depicts how the
schedule information is extracted for the MJPEG applica-
tion in Figure 1(2a). Each FIFO port has possibly different
set of request links, as depicted in Figure 5(1a). The sched-
ule table in Figure 5(1b) shows the number of links and a list
of ports from which the links are directed. As an example,
the round-robin pointer in the arbiter A2 points to either P2
or P6, as depicted in Figure 5(1c), indicating that the data
in FIFOs connected to P2 is transferred to either processor
P2 or processor P6. The schedule table for the round-robin
pointer is identical to the topology information. Second,
given the schedule table, the arbiter generates two control
signals, namelyCTRL PROC andCTRL FIFO. Fig-

ure 5(2) depicts that P6 reads from a remote memory in
P2, as represented by the bold line.CTRL PROC and
CTRL FIFO arbitrates therequestsand data transfers,
respectively. In case there is a request, the request is regis-
tered. The registered 32-bit request signal contains a target
port and a target FIFO index. If the target port is idle and
the designated FIFO contains data,CTRL PROC signals
are generated.CTRL FIFO signal is generated by sim-
ply swapping theCTRL PROC. Third, control signals
dynamically configure the switch fabrics. There are two
types of multiplexors, namely processor-side multiplexors
and FIFO-side multiplexors. Processor-side multiplexors
are controlled byCTRL FIFO signals and the FIFO-
side multiplexors are controlled byCTRL PROC signals.
Once a link is established, a remote memory behaves as a
local memory until the link is cleared.

(1) Extraction of topology

Port NUM_LINK PORT_LIST

 P1 5 P2,P3,P4,P5,P6

 P2 2 P2, P6

 P3 2 P3, P6
 P4 2 P4, P6

 P5 2 P5, P6

 P6 1 P6

(2) A network with customized arbiter A2

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

F
IF

O
s

P
r
o
c
ess

o
rs

request data

CC2 CC6

P
2

in
te

rfa
c
e

P
r
o

c
e
ss

o
r
 sid

e

P
 6

in
te

rfa
c
e

F
I
F

O
 s

id
e

P
2

in
te

r
fa

c
e

F
IF

O
 6

in
te

rfa
c
e

Request’

Read’

Data’

Empty’

Request’

Read ’

Data’

Empty’

FIFO_sel

Empty

Data

FIFO_sel

Empty

Data

Arbiter 2

Read-requested by processor-side P6

Select target FIFO and check if FIFO is empty

Establish circuit between P2 and P6

and start remote-read operation

Read

Read

switch module

1

2

3

1
2

3

(1a) Topology
(1b) Schedule table

(topology table)
(1c) Custom arbiters

CTRL_PROC

=P6

CTRL_FIFO

=P2

MUX_OUT = P6

MUX_OUT = P2

A1

A2

A3

A4

A5

A6

legend

A arbiter

CC network interface
control
data

2
6

3
6

4
6

5
6

6

2
34

5
6

A1

A2

A3

A4

A5

A6

Figure 5. A customized crossbar network.

The implemented scheduler modules are integrated in
the centralized crossbar network and are compared in terms
of area utilization. We experimented with different task
graph topologies of realistic applications, where our net-
work provided the on-demand topologies. The application
task graphs of MPEG4, PIP, MWD are taken from [12]. The
task graphs of H.263 encoding, MP3 encoding, and MMS
are taken from [13]. The task graphs of 802.11 MAC, TCP
checksum, VOPD are taken from [14],[15],[16], respec-
tively. The numbers between braces indicate the number
of nodes and the number of required links. As an exam-
ple, TCPChk{5,14} indicates that the crossbar for the TCP
checksum application requires 5 nodes and 14 links. As-
suming each node is associated with a single crossbar port,
the implemented networks are synthesized using the Xil-
inx ISE 8.2 tool on Virtex-II Pro (xc2vp20-7-896) FPGA
and the areas have been obtained as depicted in Figure 6.
The network with our CPS requires on average 52% less
area compared to the network with FPS. As an example,
our centralized 5-node crossbar network employing the FPS
occupies 437 slices, while the area is reduced to 187 slices
when the crossbar network accommodates our CPS for the
topology of the MJPEG application in Figure 1(2a). The
network with our CPS requires on average 17% more area
compared to the network with SQS. We consider that the
area overhead of our CPS over SQS is less significant, since
the xc2vp20 device we target contains 9280 slices and chip-
wise overhead of CPS over SQS is on average 2.5%. As
an example, a crossbar system network for 16-node VOPD
application occupies 716 slices for CPS and 664 slices for
SQS. The area of our network is not only dependent on the
number of nodes that determine its size but also on the net-
work topology. It is observed that the higher area reduction
is obtained as the network size increases. This is due to the
fact that the average number of links per node is 1.8 and
does not increase as the number of nodes increases.

0

2000

4000

6000

8000

10000

M
JP

E
G

 {5
, 7

}

M
P
3

en
c
{5

, 1
0}

TC
P
 C

hk
 {5

, 1
4}

M
JP

E
G

 {6
, 1

4}

H
.2

63
en

c
{7

, 1
4}

P
IP

 {8
, 8

}

 8
02

.1
1

M
A
C
 {
9,

 2
0}

M
W

D
 {1

2,
 1

3}

M
P
E
G
4 {1

2,
 2

6}

V
O

P
D
 {1

6,
 2

0}

W
ave

le
t {

22,
 3

6}

M
M

S
 {2

5,
 4

7}

Topologies

N
u

m
b

e
r
 o

f
s

li
c

e
s

FPS + Switch
SQS + Switch
CPS + Switch

Area of crossbar network

Figure 6. Experimental results.

5 Conclusions
In this paper, we presented a topologically customized

crossbar scheduler designed for networks on chip. We
showed that our scheduler can be implemented using pa-
rameterized arbiter arrays. By utilizing the topology as a
parameter, the scheduler is adapted to given applications,
without modifying the network implementation. Our cus-
tomized network efficiently utilizes the bandwidth, by con-
structing on-demand topologies. We showed that our sched-
uler performs better and occupies significantly less area
than conventional fully parallel schedulers. We showed
that our scheduler performs significantly better for small-
sized tokens communicated over large networks and occu-
pies moderately more area than sequential schedulers.

Acknowledgement. This work was supported by the Dutch Science
Foundation (STW) in the context of the Architecture, Programming,
and Exploration of Networks-on-Chip based Embedded System Platforms
(ARTEMISIA), project number LES.6389.

References
[1] Cisco Systems, Inc., http://www.cisco.com.
[2] N. Mckeown, “TheiSLIP scheduling algorithm for input-queued switches,”

IEEE/ACM Transaction on Networking, vol. 7, no. 2, pp. 188-201, Apr 1999.
[3] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of

Network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, pp. 1–51, Mar
2006.

[4] S. Vassiliadis and I. Sourdis, “FLUX Networks: Interconnects on Demand,”
Proceedings of International Conference on Computer Systems Architectures
Modelling and Simulation (IC-SAMOS’06), pp. 160–167, Jul 2006.

[5] F. Moraes, N. Calazans, A. Mello, L. M̈oller, and L. Ost, “HERMES: an
Infrastructure for Low Area Overhead Packet-switching Netwoks on Chip,”
Integration, the VLSI Journal, vol. 38, no. 1, pp. 69–93, Oct 2004.

[6] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR: A Light-
weight Parallel Router for FPGA-based Networks-on-Chip,” Proceedings of
the Great Lakes Symposium on VLSI (GLSVLSI’05), pp. 452–457, Apr 2005.

[7] T.A. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,
and R. Lauwereins, “Topology adaptive network-on-chip design and imple-
mentation,” IEE Proceedings of Computers & Digital Techniques, vol. 152,
no. 4, pp. 467–472, Jul 2005.

[8] E.A. de Kock, G. Essink, W.J.M Smits, P. van der Wolf, J.-Y. Brunel, W.M.
Kruijtzer, P. Lieverse, and K.A. Vissers, “YAPI: Application Modeling for
Signal Processing Systems,” Proceedings of the 37th Design Automation Con-
ference (DAC’00), pp. 402–405, Jun 2000.

[9] J. Y. Hur, T. Stefanov, S. Wong, and S. Vassiliadis, “Systematic Customization
of On-Chip Crossbar Interconnects,” Proceedings of International Workshop
on Applied Reconfigurable Computing (ARC’07), pp. 61–72, Mar 2007.

[10] H. Nikolov, T. Stefanov, and E. Deprettere, “Efficient Automated Synthe-
sis, Programming, and Implementation of Multi-processor Platforms on FPGA
Chips,” Proceedings of 16th International Conference on Field Programmable
Logic and Applications (FPL’06), pp. 323–328, Aug 2006.

[11] Rusty O. Baldwin, Nathaniel J. Davis IV, Scott F. Midkiff b, and John E.
Kobza, “Queueing network analysis: concepts, terminology, and methods,”
The Journal of Systems and Software, vol. 66, no. 2, pp. 99–117, May 2003.

[12] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G.D. Micheli, “NoC Synthesis Flow for Customized Domain Specific Multi-
processor Systems-on-Chip,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 2, pp. 113–129, Feb 2005.

[13] J. Hu and R. Marculescu, “Energy-Aware Mapping for Tile-based NoC Ar-
chitectures Under Performance Constraints,” Proceedings of the 8th Asia and
South Pacific Design Automation Conference (ASP-DAC’03), pp. 233–239,
Jan 2003.

[14] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS: A High-
Performance System-on-Chip Communication Architecture with a Dynami-
cally Configurable Topology,” Proceedings of 42th International Conference
on Design Automation Conference (DAC’05), pp. 571–574, Jun 2005.

[15] K. Lahiri, A. Raghunathan, G. Lakshminarayana and S. Dey, “Design of High-
Performance System-On-Chips Using Communication Architecture Tuners,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 23, no. 5, pp. 620–636, May 2004.

[16] S. Murali and G.D. Micheli, “Bandwidth-Constrained Mapping of Cores onto
NoC Architectures,” Proceedings of International Conference on Design, Au-
tomation and Test in Europe (DATE’04), pp. 896–901, Feb 2004.

