
Improving the LSDh-tree for fast approximate
nearest neighbor search

Floris Kleyn

Leiden University, The Netherlands

Technical Report

kleyn@liacs.nl

1. Abstract

Finding most similar items in large datasets is a popular
task. Examples are searching for similar images, scientific
articles, songs and movies. Similarity search is also called
nearest neighbor search and it is computationally expen-
sive, especially when data is high dimensional. Many
algorithms exists to perform nearest neighbor search, but
the performance decreases enormously when the dimen-
sionality of the data increases: the curse of dimensionality.
To overcome this, it is also possible to perform an approxi-
mate nearest neighbor search which, as opposed to exact
nearest neighbor search, does not always yield in the best
neighbor(s) but gives good results quicker than currently
possible with exact nearest neighbor search algorithms.

In this paper we propose a new algorithm for approx-
imate nearest neighbor search and compare it with the
current state of the art.

2. Related Work

In the field of multimedia retrieval[30, 26, 23, 22, 25, 16]
one of the core tasks is searching for similar items by
content. A lot of research has been done in the field of
nearest neighbor search and many different algorithms
exist. These algorithms can be divided into different cate-
gories. The most basic algorithm is linear search, where
the query item is compared with all other items to obtain
its nearest neighbors. More advanced algorithms limit the
amount of comparisons needed to get the nearest neigh-
bors, which can speedup the search significantly. Popular
algorithms use for example trees, hashes or graphs. In the
following subsections we will describe these categories in
more detail.

2.1. Tree-based methods

There are many tree-based methods. Probably the most
well-known is the k-d-tree[6]. The k-d-tree is a binary tree.
Internal nodes split the data space by hyperplanes into
two halves, based on a split dimension and split point.
Points will fall in either of these two half-spaces, based
on their value in the split dimension, and are therefore
associated with either the left or right subtree. Splitting
continues until a node only holds a single point.

Searching in a tree is done by traversing the tree to a
leaf, determining in every internal node if the left or right
subtree should be taken. This is based on the value in the
split dimension of the query point. When a leaf node is
reached it does not necessarily contain the nearest neigh-
bor. Therefore, after reaching a leaf some backtracking is
required to search for better neighbors.

As long as the dimensionality of the data is low the
performance is very good. When the dimensionality in-
creases, the performance quickly drops towards that of
linear search since a lot more backtracking is required.

To reduce the time spent in backtracking methods such
as best-bin-first search [5] and priority search [3] were
proposed. These are approximate nearest neighbor search
algorithms. Randomised k-d-trees were proposed in [24].
Multiple trees are created and then searched simultane-
ously. Every tree contains a random rotation of the data
making the searches independent and speeding up the
search. The LSD-tree[15] uses priority search and has
buckets in its leaves that can hold several points.

Another group of trees do not use hyperplanes to de-
compose the space but use clustering algorithms. The
hierarchical k-means tree was proposed in [9]. In [20] a
modified version of the k-means tree is described that uses
a best-bin-first strategy.

Other trees are for example the R-tree [10], used for
spatial data, the B-tree [4], which keeps data sorted and
internal nodes can have more than two children and the

1



Quadtree [8], which is used for two-dimensional data but
can be extended toward more dimensions. The number of
children of each internal node is 2d, creating an Octree for
3-dimensional data. This rapid increase of children make
it unsuitable for high dimensional data.

2.2. Hashing-based methods

Hashing-based methods are primarily about Locality Sen-
sitive Hashing (LSH) [1]. It reduces the dimensionality
of high dimensional data by projecting the data onto ran-
dom chosen vectors. Items are hashed in such a way that
similar items have a high probability to map to the same
bucket. To achieve this a large number of hash functions
is used.

Different hash families have been applied, such as Eu-
clidean distance, Jaccard similarity and cosine similarity.
A downside of LSH is the large memory requirement for
hash tables. Multi-Probe LSH [19] greatly reduces the
number of required hash tables while only losing a little
search performance. Many methods exist that try to im-
prove the quality of the hashes, such as kernelized LSH
[17] and spectral hashing [28].

2.3. Graph-based methods

Graphs for nearest neighbor search are also used. In these
graphs every data point is a vertex and edges connect data
points. Nearest neighbor search may be performed on
different types of graphs. In [2] a variant of a Relative
Neighborhood Graph [27] is used called RNG*. A visibility
graph is used in [18]. Another possibility is a nearest
neighbor graph (NNG) as underlying graph[21].

A k-NNG is a directed graph where point x is connected
to point y if y is one of x k-NNs. An approximate nearest
neighbor search algorithm is proposed in [11], which uses
hill-climbing on a k-NNG to improve search speed. It
starts at a random vertex and moves to the vertex that is
closest to the query point by calculating the distances of
its neighbors to the query point. After a predetermined
number of moves the algorithm stops. To prevent the
algorithm from getting stuck in a local optimum nodes
are marked when visited and are not visited again during
search.

Constructing nearest neighbor graphs is an expensive
operation, but [7] describes the nearest neighbor descent
(NN-Descent) algorithm that constructs an approximate
nearest neighbor graph, which can be built much faster

than an exact graph. Since current state of the art approxi-
mate nearest neighbor search algorithms outperform exact
algorithms it does not matter that the NNG is not exact.

3. Algorithm

The algorithm we developed is based on the Local Split
Decision hierarchical (LSDh) tree[14]. Therefore, we will
first explain the LSD-tree[15] on which the LSDh-tree is
based. Then we will discuss the LSDh-tree itself and finally
our algorithm with the improvements we made.

3.1. LSD-tree

The LSD-tree is very similar to a k-d-tree. It is an exact
nearest neighbor search algorithm. Internal nodes have a
split dimension and a split point. The internal nodes par-
tition the data space into disjoint regions based on some
splitting rule. Every internal node has two children and
leaf nodes contain the data points. Unlike the standard
k-d-tree where a node holds a single data point, the LSD-
tree has leaves that contain buckets of fixed size. Each
bucket can be filled with data items until the bucket is
full. When a new point is inserted into a full bucket, the
bucket will overflow. New buckets are then created. The
overflowing bucket is replaced by a new internal node and
two buckets are attached to this node. Data points in the
old bucket are distributed over the new buckets. To deter-
mine the distribution the split dimension and split point
have to be determined first. This can be done solely based
on the data space of the bucket (determined by all split
dimensions and split points of its ancestors), either data
dependent or distribution dependent. The split is thus
determined locally, hence the name Local Split Decision
tree.

In [13] different methods to improve the performance
of k-d-tree based structures are described. They use the
LSD-tree as an example. The methods all focus on higher
bucket utilisation. The simplest method they proposed is
the following: in case a bucket split is required, its sibling
is checked first. If a sibling is also a bucket and its capacity
is not yet reached, the split point is adjusted such that one
point is shifted into the sibling and thus no bucket split
is needed. Two other methods try to also shift a point
into a bucket when the sibling is a subtree. The results
of those approaches were disappointing. It resulted in a
more unbalanced tree since a point is stored in a subtree,
meaning it is stored at a higher level (e.g. further from

2



the root) than the overflowing bucket. To overcome this
another method only shifts a point in another bucket if
the level of the bucket is lower or equal to the overflowing
bucket. This improves the bucket utilisation by 10-15%
and and the same improvement was achieved with large
range queries.

An algorithm to search for nearest neighbors in an LSD-
tree is described in [12]. It uses two priority queues to
determine which nodes should be visited: one queue for
nodes (NPQ) and one queue for data points (OPQ). The
priority is determined by the distance from the node or
data point to the query point. Every time we descend
in the tree its sibling node is stored in the node priority
queue. Points are added to the queue for data points
when a bucket is processed. Our search algorithm is based
on this and since they are still quite similar we will only
describe our algorithm in detail and mention differences.

3.2. LSDh-tree

A new split strategy is introduced in [14] as well as coded
actual data regions. These improvements made the LSD-
tree more suitable for high dimensional data and make
up the LSDh tree. Coded actual data regions overestimate
the bounding boxes of subtrees and buckets slightly, but
reduces the amount of required memory.

Two split strategies were proposed. The first one splits
in dimension (dold + i) mod k, where i is 1 and k the num-
ber of dimensions of the data. If no variance within the
points that are in the overflowing bucket is present in this
dimension, i is increased by 1 until a dimension is reached
where variance does occur. For high dimensions they
mention that this method might not be suitable and alter-
natively the dimension with the highest variance (based
on items in the overflowing bucket) can be used as the
splitting dimension. This is the same strategy as used by
the VAMSplit R-tree [29]. The split point is determined by
calculating the average of the values in the split dimension
of the data points present in the bucket.

The LSDh-tree only uses the simplest described strategy
to prevent bucket splits: it only shifts a point to another
bucket in case its sibling is also a bucket (and still has
space left).

3.3. Improving the LSDh-tree

To improve the search speed we adjust the LSDh-tree to
an approximate nearest neighbor search algorithm. To

achieve this our algorithm terminates after a certain num-
ber of leaves (e.g. buckets) have been visited. This is
controlled by a cost parameter. By changing the number
of buckets that we visit we can control the quality of the
nearest neighbors that the algorithm returns.

After some nodes have been visited during search it is
still possible to find good neighbors by processing nodes
that are already in NPQ. The chance however that new
nodes that are added to the queue have a high enough pri-
ority to actually be processed diminishes. Therefore, after
the cost drops below a certain threshold no new nodes are
added to NPQ, reducing the amount of distance calcula-
tions. Nodes already in the queue are still processed until
cost is zero. The idea of a threshold is also present in the
FLANN library [20].

Searching in more than a single k-d-tree simultaneously
was proposed by [24]. Every tree has a different struc-
ture but holds the same data. Visiting many nodes in the
same tree only results in visiting nodes that are far away
from the node that contained the query point (the node
does not really have to hold the query point but the query
point would be in that bucket if it was present in the tree,
based on the split dimensions and split points in the tree).
This reduces the chance that it holds a nearest neighbor.
Creating more than one tree and visiting them simulta-
neously makes sure that more buckets that contained the
actual query point are searched (but have different content
since other split decisions were made) and also that nodes
nearby the query point are searched. To prevent that the
same data item is processed (and potentially reported as
a nearest neighbor) more than once all data items are
marked when processed for the first time during a search.

A small improvement to speed up the algorithm is in-
stead of using a priority queue (where only the top item
in the queue is accessible) is using a bounded priority
queue for OPQ where also the bottom item is available.
The bounded priority queue can hold at most n items. In
our case n is equal to the number of nearest neighbors
the algorithm should return. This allows for incremental
calculation of the distance to the query point: in a stan-
dard priority queue the worst element is not accessible
so when calculating the distance between a query point
and another point we have no idea of the quality of this
point. It might be a very bad candidate but we do not
know since we have only knowledge of the best neighbor
found so far. Now, when the queue holds n elements
and the distance to a new item is calculated, we can stop
the distance calculation as soon as it is higher than the

3



distance of the worst item in the queue. If the distance
stays smaller that the worst item in the queue the entire
distance is calculated and the point is added to the queue.
The worst item is then removed from the queue to keep n
items in the queue.

We do not use the coded actual data regions since the
extra memory requirement is not a problem.

3.3.1. Split approach

We have tested three different split methods: local, semi-
local and global based splits. Local splitting is as described
in Section 3.2 where the dimension with highest variance
is used as split dimension. Split dimension and split point
are only based on points in a bucket. For semi-global splits
the split dimension is determined globally by calculating
the variance based on a sample of all data that falls in the
data region contained by the bucket (e.g. delimited by
split points and split dimensions of all its ancestors). The
split point is determined locally.

For global splitting the variance and the average are
based on samples of the entire data set. As a consequence
the tree is constructed in a different way. When construc-
tion starts all data points lie in the same data space region.
If the number of points in the data space region is higher
than the bucket capacity the data space is split. The split
is determined by calculating the variance of a sample of
points that lie in that region. To ensure that every tree in
a forest is different we do not select the dimension with
highest variance but pick one at random, between top-k
dimensions with highest variance. After the dimension
is picked the split point is determined by calculating the
average of the sample in the split dimension. Then, for all
points in the data space it is determined in which of the,
now two, regions it falls. Regions are split as long as they
contain more points than fit in a single bucket. Every time
the region is split an internal node is added to the tree
with the split dimension and split point. When the points
that lie in a region fit in a bucket a leaf node is created.

Figure 1 shows the three split approaches. First, a pa-
rameter sweep was performed to select the best bucket
size for every split approach. We tried global splitting ap-
proach for different top-k high variance dimensions. The
best approach is to make the split decision based on global
information, if a suitable k is chosen. The worst strategy
is to split semi-local. We found it surprising that local
split decisions perform so well since it depends entirely
on the points in a bucket. There are no guarantees that

0.970 0.975 0.980 0.985 0.990 0.995 1.000

Recall (%)

10

3

4

5

6

7

8

9

20

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

Local

Global (3)

Global (5)

Global (10)

Global (20)

Semi-local

Figure 1: Comparison between the three different split approaches on
the SIFT-dataset. Between parentheses the number of top-k
high variance dimensions is stated.

the content of a bucket contains a representative sample of
the dataset. This approach probably works well since the
data is inserted in a random permutation per tree, creating
more different trees than the global split approach does.

Global based splits profit from the fact that the statis-
tics on which the split is based reflect the entire dataset.
As a consequence the bucket utilisation is much higher
so we achieve a smaller tree with a more even spread of
points per bucket. In our experiments (Section 4) we use
local split to keep one of the fundamental ideas behind
the LSD-tree intact. This method is also more suitable
for incrementally updating the tree and prevents further
parameter tuning. Global splits need a second insert algo-
rithm for incremental updating the tree. Of course, it is
possible to rebuild the tree every time when new points
need to be added. It is also not unlikely that after the
tree is built it is used for a long time for running queries.
In that case global splits are fine as long as a good k is
picked.

3.4. Early stopping

The original search algorithm has a check that compares
the top elements in NPQ and OPQ. If the top element
in OPQ is closer to the query point than the top element
in NPQ then the element is removed from OPQ, since
no nearer points are present in the tree, and stored in a

4



0.965 0.970 0.975 0.980 0.985 0.990 0.995

Recall (%)

10

5

6

7

8

9

20

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

With check

Without check

Figure 2: Comparison between checking if best item in NPQ is worse
than worst item in OPQ, and without this check on the
SIFT-dataset.

FIFO-queue holding the nearest neighbors in ascending
order.

We perform a similar check, but since we not only know
the closest element (best) in OPQ but also the furthest
away element (worst) we perform a different check. If the
worst element in OPQ is better than the best element in
NPQ then we do not need to search any further and we
have found the top-k exact nearest neighbors.

We ran an experiment where this check is available in
the algorithm and where it is not. Since our algorithm is
approximate we also stop the search when cost has reached
zero. If cost always reaches zero before the check is true
then it will only result in overhead. In Figure 2 the result
of this experiment is shown. At very high recall levels it
gives an improvement in the performance while only a
very low decrease in performance exists at slightly lower
recall. Therefore we keep this check in our algorithm.

3.5. Pruning

We tried two methods to prune the tree during search.
We first tried to prune the tree while descending to a leaf
by calculating the distance between every visited internal
node and the query point. If the distance would be larger
than the worst distance in OPQ we could stop the search
and proceed with the next node in NPQ. However, the
added cost of calculating the distance did not outweigh

the time saved with pruning the tree. Then we tried to
only prune buckets by calculating the distance between
a bucket (determined by the bounding box of its content)
and the query point. At the cost of one extra distance
calculation comes the possibility to save calculating the
distance for every item in the bucket. But this method
decreased performance also. Adding distance calculations
to potentially save more distance calculations did not seem
to work.

3.6. Explaining the algorithm

In Algorithm 1 the pseudo code of our algorithm is listed.
Our input consists of the roots of all trees in the forest
(trees), the number of required nearest neighbors (nn), two
empty queues OPQ (Object Priority Queue) and NPQ
(Node Priority Queue) and our query point q. NPQ holds
nodes as where OPQ holds data points. The priority is
determined by the distance to q. The entire forest has
just two queues so we search in the tree that contains the
node with highest priority (smallest distance) to q. Cost
determines the maximum number of leaves that will be
visited. The output is result set R that will contain the nn
approximate nearest neighbors to q.

At the start of our algorithm we put some dummy data
in OPQ such that it always holds nn. Otherwise every time
an item is added to OPQ the size of the queue should be
checked to determine if the worst item from OPQ should
be removed. All roots are stored in NPQ. We use a distance
of 0 since the distance from the root to the query point
will be very small (in most cases 0): The root contains the
entire search space, of which its boundary is defined by
the bounding box of all points, and it is very likely our
query point falls within this bounding box. By choosing 0
we limit the amount of distance calculations. Finally, we
also set the threshold. We set it to 83% of cost.

In our main loop the trees are searched as long as less
than the maximum number of leaves have been visited
(cost > 0) and the best item in NPQ is better than the worst
item in OPQ. Every iteration the node closest (based on the
distance between its bounding box and the query point) to
the query point is removed from NPQ and used to traverse
the tree. As long as this node has a left child (and thus a
right child) the algorithm has to determine if the left or
right subtree should be taken. This is determined on the
value of the query in the split dimension of the node. If
the cost is above the threshold the sibling node of the root
of the subtree that will be taken is added to NPQ.

5



input : Empty priority queues NPQ and OPQ, cost cost,
number of nearest neighbors nn, roots of all trees
in trees and query point q.

output : Result set R filled with nn approximate nearest
neighbors.

for 0 to nn do // Fill queue to prevent checks
OPQ.add(NULL, ∞);

foreach w ∈ trees do // Push all roots in queue
NPQ.add(w, 0);

threshold = cost ∗ 0.83;
while cost > 0 and dist(NPQmin, q) < dist(OPQmax, q)
and NPQ.size() > 0 do

w = NPQmin;
NPQ.deleteMin();
while wl do // Node is not a bucket

sdim = split dimension stored in w;
spoint = split point stored in w;
if q[sdim] ≤ spoint then

if cost > threshold then
NPQ.add(wr, dist(wr, q));

w = wl ; // Take left branch
else

if cost > threshold then
NPQ.add(wl , dist(wl , q));

w = wr; // Take right branch

// We reached a bucket
foreach o ∈ bucket do

if not isProcessed(o) then
if dist(o, q) < dist(OPQmax, q) then

OPQ.deleteMax();
OPQ.add(o, dist(o, q));

cost = cost− 1;

for 0 to nn do
R.add (OPQmin);
OPQ.deleteMin();

Algorithm 1: Approximate nearest neighbor search algo-
rithm for LSDh-tree.

A bucket is reached when a node does not have a left
child (and therefore no right child). The distance between
the items in the bucket and the query point is then cal-
culated, if at least that item is not already processed in
another tree. As soon as the, so far calculated, distance is
larger than the maximum in OPQ, the distance calculation
is stopped. If it is smaller it is added to OPQ and the

worst item in OPQ is deleted.
When the main loop terminates the items in the queue

are added to our result R. The main loop will terminate
either because the cost reached zero or because the exact
nn nearest neighbors have been found.

4. Experiments

In this Section we describe the steps we took to compare
the performance of our algorithm to some state of the art
algorithms.

4.1. Algorithms

We picked randomised k-d-trees, hierarchical k-means,
Multi-Probe LSH and hill-climbing on a k-NN graph. We
calculated the speedup every algorithm achieved com-
pared to linear search.

FLANN (Fast Library for Approximate Nearest Neigh-
bors)1 is a library written in C++ by the authors of [20]. It
has implementations of randomised k-d-trees and hierar-
chical k-means. It currently sets the standard for nearest
neighbor search. Auto-tuning always gave k-means as
the most suitable algorithm which is in line with their
research that said that k-means is more suitable when high
precision is required. Therefore, we only ran experiments
with k-means and dropped the k-d-tree. We also used their
implementation of linear search.

We used LSHKIT2 for Multi-Probe LSH. It is a Locality
Sensitive Hashing library also written in C++. It contains
several LSH algorithms and comes with the possibility of
auto-tuning the parameters for Multi-Probe LSH, which
we used.

We implemented hill-climbing on a k-NN graph our-
selves. However, we used NNDES3 for graph construction.
It implements the NN-Descent algorithm described in
[7]. We performed a parameter sweep to select the best
parameters.

We also performed a parameter sweep on our improved
LSDh algorithm, selecting different values for the number
of trees, the bucket size and the number of buckets to be
visited.

1http://www.cs.ubc.ca/research/flann/
2http://lshkit.sourceforge.net/
3http://code.google.com/p/nndes/

6

http://www.cs.ubc.ca/research/flann/
http://lshkit.sourceforge.net/
http://code.google.com/p/nndes/


4.2. Datasets

We selected a couple of datasets. First the SIFT1M4 dataset
with one million SIFT-feature vectors of 128 dimensions.
It comes with a separate query dataset with 10,000 vectors.
Another dataset we used is a subset of the Million Song
Dataset5 containing 515,345 feature vectors of 90 dimen-
sions. We used 10,000 of these vectors as queries. The last
dataset had one million vectors of 20 dimensions contain-
ing random data, which was generated by ourselves.

4.3. Recall

For every algorithm we measured the running time at
different recall levels and compared that with the running
time of linear search. We defined recall as the percent-
age of overlap between the groundtruth and the approx-
imate nearest neighbors returned by an algorithm. All
algorithms return neighbors in ascending distance to the
query point so there was no need to take the position of a
neighbor in the output into account.

We also experimented with two other recall measures.
We gave a higher weight to nearer neighbors by awarding
k points to the nearest neighbor up to 1 point to the k-NN.
At the same percentage of correct nearest neighbors the
algorithm that has more points returns on average nearer
neighbors. The other measure applied a similar technique
but now a lower score is better: 1 point for 1-NN up to
n points for n-NN (where n� k). If a returned neighbor
was worse than n-NN a fixed penalty was given. A higher
score would mean that the incorrect neighbors are further
away from the query than at a lower score (given that the
same percentage of correct neighbors is returned). These
methods are quite similar to each other but the second
method allow us to punish returned neighbors that are
far away better. We only report results based on the first
recall measure since differences where low and had no
impact on the ranking of algorithms.

4.4. Results

In Figures 3, 4 and 5 the results of our experiments are
listed. In all our experiments with the LSDh-tree we use 75
trees as more trees resulted in better performance. On the
SIFT-dataset we use a bucket size of 30. For the Million
Song Dataset and random dataset we used a bucket size of
90 and 20 respectively. The results show the performance

4http://corpus-texmex.irisa.fr/
5http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

on different datasets with a recall between 0.8 and 1.0.
The most notable thing is that our algorithm performs
really poor on the Million Song dataset (Figure 4) and
does not achieve high recall here. A higher speedup can
be achieved with another split approach but it will not
improve recall. Another thing to notice is the difference in
speedup achieved on the random data dataset. The nearest
neighbor graph method really stands out here. The perfor-
mance of the other methods, except Multi-Probe LSH, are
all very similar to each other on the SIFT-dataset, although
on the performance of the nearest neighbor graph method
drops quickly at high recall.

0.80 0.85 0.90 0.95 1.00

Recall (%)

1

10

2

3

4

5
6
7
8
9

20

30

40

50
60
70
80

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 3: Comparison of different approximate nearest neighbor search
algorithms on the SIFT1M dataset at 10 nearest neighbors.

To better highlight the differences in performance be-
tween methods we also show the performance with a
recall between 0.97 and 1.0. These results are listed in
Figures 6, 7 and 8.

5. Conclusion

There is no algorithm that performs best on all datasets.
When high performance is required some experiments
have to be done to determine which algorithm is the best
algorithm for the particular dataset. FLANN performs
really well, but it can still be outperformed by other algo-
rithms. Although FLANN is currently the standard it is
not in all cases the best choice.

Our improved LSDh-tree did not perform as well as we
hoped. A more extensive parameter sweep might improve

7

http://corpus-texmex.irisa.fr/
http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD


0.80 0.85 0.90 0.95 1.00

Recall (%)

1

10

2

3

4

5
6
7
8
9

20

30

40

50
60
70
80
90

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 4: Comparison of different approximate nearest neighbor search
algorithms on the Million Song dataset at 10 nearest neigh-
bors.

the performance and switching from local splits to global
splits does improve results, although it would not be Local
Split Decision anymore. Further testing should also be
done at different number of returned nearest neighbors.

If pruning would be cheaper performance might in-
crease but calculating the Euclidean distance of a bound-
ing box to the query point simply takes too much time.
It might be possible to estimate the distance instead to
speed up the pruning. Another problem is that the true
distance from the query point to the bounding box is al-
ways too optimistic. Points inside the bounding box will
(nearly) always be further away from the query point than
the bounding box itself. Currently it is possible that a
subtree is not pruned since its distance is close enough to
the query to contain good neighbors although all of the
data points in the subtree are actually too far away. If this
distance underestimation can be tackled, pruning will be
more feasible and search performance might increase.

References

[1] Alexandr Andoni and Piotr Indyk. “Near-optimal
hashing algorithms for approximate nearest neigh-
bor in high dimensions”. In: Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on. IEEE. 2006, pp. 459–468.

0.80 0.85 0.90 0.95 1.00

Recall (%)

10

2

3

4

5

6
7
8
9

20

30

40

50

60
70

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 5: Comparison of different approximate nearest neighbor search
algorithms on the random data dataset at 10 nearest neigh-
bors.

0.970 0.975 0.980 0.985 0.990 0.995 1.000

Recall (%)

10

2

3

4

5

6

7

8
9

20

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 6: Comparison of different approximate nearest neighbor search
algorithms on the SIFT1M dataset at 10 nearest neighbors
at high recall levels.

[2] Sunil Arya and David M Mount. “Approximate
Nearest Neighbor Queries in Fixed Dimensions.”
In: SODA. Vol. 93. 1993, pp. 271–280.

[3] Sunil Arya et al. “An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions”.
Journal of the ACM (JACM) 45.6 (1998), pp. 891–923.

8



0.970 0.975 0.980 0.985 0.990 0.995 1.000

Recall (%)

1

10

2

3

4

5

6

7
8
9

20

30

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 7: Comparison of different approximate nearest neighbor search
algorithms on the Million Song dataset at 10 nearest neigh-
bors at high recall levels.

[4] R BAYER. “Organization and maintenance of
large ordered indexes”. Acta Informatica 1.3 (1972),
pp. 173–189.

[5] Jeffrey S Beis and David G Lowe. “Shape indexing
using approximate nearest-neighbour search in high-
dimensional spaces”. In: Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer
Society Conference on. IEEE. 1997, pp. 1000–1006.

[6] Jon Louis Bentley. “Multidimensional binary search
trees used for associative searching”. Communica-
tions of the ACM 18.9 (1975), pp. 509–517.

[7] Wei Dong, Charikar Moses, and Kai Li. “Efficient
k-nearest neighbor graph construction for generic
similarity measures”. In: Proceedings of the 20th in-
ternational conference on World wide web. ACM. 2011,
pp. 577–586.

[8] Raphael A. Finkel and Jon Louis Bentley. “Quad
trees a data structure for retrieval on composite
keys”. Acta informatica 4.1 (1974), pp. 1–9.

[9] Keinosuke Fukunaga and Patrenahalli M Narendra.
“A branch and bound algorithm for computing k-
nearest neighbors”. Computers, IEEE Transactions on
100.7 (1975), pp. 750–753.

[10] Antonin Guttman. R-trees: a dynamic index structure
for spatial searching. Vol. 14. 2. ACM, 1984.

0.970 0.975 0.980 0.985 0.990 0.995 1.000

Recall (%)

10

2

3

4

5

6

7
8
9

20

30

S
p
ee
d
u
p
ov
er

li
n
ea
r
se
ar
ch

FLANN

LSDH

NNGRAPH

LSH

Figure 8: Comparison of different approximate nearest neighbor search
algorithms on the random data dataset at 10 nearest neigh-
bors at high recall levels.

[11] Kiana Hajebi et al. “Fast approximate nearest-
neighbor search with k-nearest neighbor graph”.
In: IJCAI Proceedings-International Joint Conference on
Artificial Intelligence. Vol. 22. 1. 2011, p. 1312.

[12] Andreas Henrich. “A Distance Scan Algorithm for
Spatial Access Structures.” In: ACM-GIS. Citeseer.
1994, pp. 136–143.

[13] Andreas Henrich. “Improving the performance of
multi-dimensional access structures based on kd-
trees”. In: Data Engineering, 1996. Proceedings of the
Twelfth International Conference on. IEEE. 1996, pp. 68–
75.

[14] Andreas Henrich. “The LSD h-tree: An access struc-
ture for feature vectors”. In: Data Engineering, 1998.
Proceedings., 14th International Conference on. IEEE.
1998, pp. 362–369.

[15] Andreas Henrich et al. “The LSD tree: spatial access
to multidimensional point and non-saint objects”
(1989).

[16] M. Huiskes and M. Lew. “Performance evaluation
of relevance feedback methods”. In: Proceedings of
the ACM International Conference on Image and Video
Retrieval. 2008.

9



[17] Brian Kulis and Kristen Grauman. “Kernelized
locality-sensitive hashing for scalable image search”.
In: Computer Vision, 2009 IEEE 12th International Con-
ference on. IEEE. 2009, pp. 2130–2137.

[18] Yury Lifshits and Shengyu Zhang. “Combinatorial
algorithms for nearest neighbors, near-duplicates
and small-world design”. In: Proceedings of the twen-
tieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. Society for Industrial and Applied Mathe-
matics. 2009, pp. 318–326.

[19] Qin Lv et al. “Multi-probe LSH: efficient indexing for
high-dimensional similarity search”. In: Proceedings
of the 33rd international conference on Very large data
bases. VLDB Endowment. 2007, pp. 950–961.

[20] Marius Muja and David Lowe. “Scalable nearest
neighbour algorithms for high dimensional data”
(2014).

[21] Rodrigo Paredes and Edgar Chávez. “Using the k-
nearest neighbor graph for proximity searching in
metric spaces”. In: String Processing and Information
Retrieval. Springer. 2005, pp. 127–138.

[22] Y. Rui. “Big Data and Image Search”. IEEE Multime-
dia (2014).

[23] N. Sebe, M. Lew, and A. Smeulders. “Video retrieval
and summarization”. Computer Vision and Image Un-
derstanding 92 (2003), pp. 141–146.

[24] Chanop Silpa-Anan and Richard Hartley. “Opti-
mised KD-trees for fast image descriptor matching”.
In: Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[25] Y. Sun et al. “Authentic emotion detection in real-
time video”. In: LNCS 3058: International Workshop
on Human-Computer Interaction. 2004, pp. 92–101.

[26] B. Thomee and M. Lew. “Interactive search in image
retrieval: a survey”. International Journal of Multime-
dia Information Retrieval 1.2 (2012), pp. 71–86.

[27] Godfried T Toussaint. “The relative neighbourhood
graph of a finite planar set”. Pattern recognition 12.4
(1980), pp. 261–268.

[28] Yair Weiss, Antonio Torralba, and Rob Fergus. “Spec-
tral hashing”. In: Advances in neural information pro-
cessing systems. 2009, pp. 1753–1760.

[29] David A White and Ramesh Jain. “Similarity Index-
ing: Algorithms and Performance.” In: storage and
retrieval for image and video databases (SPIE). 1996,
pp. 62–73.

[30] L. Zhang and Y. Rui. “Image search-from thousands
to billions in 20 years”. ACM Transactions on Multi-
media 9.1 (2013).

10


	Abstract
	Related Work
	Tree-based methods
	Hashing-based methods
	Graph-based methods

	Algorithm
	LSD-tree
	LSDh-tree
	Improving the LSDh-tree
	Split approach

	Early stopping
	Pruning
	Explaining the algorithm

	Experiments
	Algorithms
	Datasets
	Recall
	Results

	Conclusion

