
Universiteit Leiden

Opleiding Informatica

Content-based tag recommendation algorithms

for unstructured data

Name: Bas P. Harenslak

Date: 24/11/2014

1st supervisor: Dr. Michael S. Lew
2nd supervisor: Dr. Erwin M. Bakker

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Content-based tag recommendation algorithms

for unstructured data

Bas P. Harenslak
b.p.harenslak@umail.leidenuniv.nl

November 24, 2014

Abstract

Organisations process a huge amount of documents on a daily basis. Such documents are often
stored in an unstructured manner, e.g. HTML, Word or PDF files. The term “unstructured
data” refers to information that isn’t stored in a traditional relational database. Such data can
contain valuable information, but it is hard to find and organise since the data does not follow
a fixed structure. Tagging resources, annotating them with keywords, is a great way to improve
findability of resources in a large collection of resources.

Tagging is however a human task. This research focuses on the task of tag recommendation,
which involves finding and suggesting relevant keywords for documents from their content and
relations between users, documents and tag-words. We discuss various types of algorithms and
test their performance on three real world datasets. Besides some well known algorithms, we
implemented a system proposed by Lipczak et al. which won a major scientific event focussed on
tag recommendation. His system outperforms the well known algorithms and returns a maximum
F1 score of 0.3127 on the DeliciousT140 dataset. We propose two extensions to his system which
respectively achieve a maximum F1 score of 0.3167 and 0.3216.

Contents

1 Introduction 3
1.1 Tag recommendation . 3
1.2 Motivation . 4
1.3 Challenges . 5

1.3.1 Natural Language Processing . 5
1.3.2 Information Retrieval . 5
1.3.3 Semantics . 6
1.3.4 Social and enterprise tagging strategies . 7

1.4 Objectives . 7
1.5 Formal problem definition . 7
1.6 Research questions . 8
1.7 Thesis structure . 9

2 Building blocks 10
2.1 Software solutions . 10
2.2 Open Data . 11

2.2.1 Data characteristics . 11
2.2.2 Post-core selection . 12

2.3 IR system architecture . 13

3 Text preprocessing 14
3.1 Text clean-up . 14
3.2 Stop word removal . 14
3.3 Stemming . 15
3.4 Tokenization . 15
3.5 Part-of-speech tagging . 15
3.6 Document representation models . 15

3.6.1 Bag of words (BOW) . 16
3.6.2 TF.IDF . 16
3.6.3 Other representation models . 17

4 Tag recommendation techniques 18
4.1 Popularity based methods . 18

4.1.1 Global popular tags . 18
4.1.2 User popular tags . 18

4.2 Content based methods . 19
4.2.1 Content sources . 19
4.2.2 TF.IDF . 19
4.2.3 Topic modelling . 21

4.3 Graph based methods . 22
4.4 Hybrid approaches . 23

4.4.1 Ensemble types . 23
4.4.2 Ensembles for tag recommendation . 24

1

4.4.3 Lipczak’s tag recommendation system . 25
4.5 Evaluation . 29

4.5.1 Cross-validation . 29
4.5.2 Performance metrics . 29

5 Proposed techniques 32
5.1 Expansion of title search space . 32
5.2 Weighted recommendation based on tag popularity 33

6 Implementation 35
6.1 Data extraction . 35
6.2 Code implementation . 36

7 Experiments 39
7.1 Tag sources . 39
7.2 Preprocessing . 40

7.2.1 Word length thresholds . 40
7.2.2 Part-of-speech filtering . 41
7.2.3 Other preprocessing . 42

7.3 Tag recommendation algorithms . 43
7.3.1 Experiment settings . 43
7.3.2 Results . 44

8 Discussion 50

9 Future work 54

10 Bibliography 55

Appendices 57

A Algorithm pseudocode 57

B Word length filter results 63

C Preprocessing results 64

D Experiment results 65
D.1 DeliciousT140 . 66
D.2 Wiki10+ . 69
D.3 MovieLens 10M . 73

2

Chapter 1: Introduction

While the amount of digital information is growing at an enormous speed and the use of Big Data
technologies allow us to discover information hidden within the data, most of the stored data is not
utilized for data mining and analytics tasks. Estimations by IDC, Forrester and Gartner suggest
that over 80% of all enterprise data consists of unstructured data. Unstructured data, as opposed
to structured data, does not follow a fixed, pre-defined structure. It is typically human-generated
and is not suitable for storage in a traditional database. The content is saved in formats such as
Word, PDF or HTML. These are examples of mostly textual documents, but unstructured data
also includes o.a. audio and video recordings, PowerPoint-presentations and e-mails.

The massive amount of unstructured data is a great potential source of information, however it asks
for different technologies as used on machine-generated data (e.g. sensor information). The field
of text mining is involved with deriving relevant information from text, e.g., sentiment analysis in
which an opinion is extracted from a document. This research covers topics in information retrieval
and natural language processing, both tasks in text mining. We investigate a tag recommendation
system, a system which reads textual documents and recommends tags based on the document
content. A resource can be annotated with words identifying the resource. The words, or tags,
are relevant to the resource and can be helpful when searching for a resource in a large collection
of resources.

A folksonomy is a ‘collaborative tagging system’. In a folksonomy, users annotate resources with
tags. The tags are not restricted to a limited set of words and thus a folksonomy vocabulary
arises from the user’s personal vocabularies. Folksonomies became popular with the introduction
of web services such as Flickr and Delicious. Such services are very valuable for research on tag
recommendation systems since recommendation algorithms can be validated given the user tags
connected to resources.

In this research we investigate several tag recommendation algorithms, which are validated using
folksonomy datasets made available for research purposes. We develop a system which recommends
tags given resources. The goal of annotating resources with tags is to make the resources easier
findable in a large collection of resources. In this chapter, we discuss the motivation, challenges
and objectives behind this research. We formalize the problem and define three research questions
which we intend to answer during this research.

1.1. Tag recommendation

A tag is a piece of metadata describing a resource. Metadata is additional information about a
resource, describing e.g. the time of creation, author, location, size of a photo or content of the
resource.

In Figure 1.1 we see a tag cloud1. A tag cloud is a visualization of words in which the words are
formatted such that the most important, frequent or relevant words are displayed. Given a large
collection of tagged documents, one can easily see the most important keywords in the collection
in the cloud of words.

1Generated from this document using Wordle (http://www.wordle.net).

3

http://www.wordle.net

Figure 1.1: Tag cloud example

Tag recommendation is the process of finding and recommending the most relevant words for a
given document. The process of finding relevant words is used in various other applications:

• Indexing [21]

• Document annotation

• Metadata generation [30]

• Feature selection [6]

• Labelling [28]

• Keyword extraction [27]

1.2. Motivation

The continuously growing amount of information makes it impossible to find the right piece of
information without the help of technology. Companies process millions of resources on a daily
basis. Annotating resources with tags, which characterize the resource, are extremely helpful
in finding and organising resources. Adding tags however is a human task. Processing natural
language is a very hard task for computers and remains an active field of research.

This research is a collaboration between Leiden University and Capgemini Netherlands. One of
Capgemini’s content management products is Nuxeo. Nuxeo is an open source Enterprise Content
Management (ECM) platform, which allows document management, case management, digital
asset management and other applications2. The Nuxeo platform’s first release was in February
2007. Up to now, users can manually add tags to resources. There is no way of automatically
generating tags from a resource.

Manually adding tags is a time-consuming process and not all users take the time to annotate
resources. Annotated resources are easier to find and thus it would be very useful if all resources
could be tagged automatically. This research is intended to investigate a ‘tag recommendation
system’, i.e. a system that is able to recommend relevant tags for a given resource.

2http://www.nuxeo.com

4

http://www.nuxeo.com

Figure 1.2: Uploading a resource and manually adding tags in Nuxeo Platform.

1.3. Challenges

The recommendation task faces several challenges. The cold start problem is a general issue in
recommender systems since no information is known about new items, whether it’s a new user
or a new resource. Personalisation remains a challenge, since it is always debatable whether or
not tags must include a user’s tagging history. The ‘curse of dimensionality ’ is a large issue for
most recommendation systems. A document can contain many unique words. For example, take
a collection of 20,000 tagged documents by 5,000 unique tag-words and 100 users. Storing such
information in a d×t×u-matrix results in 20, 000×5, 000×100=10 billion entries, of which most
are empty and thus the resulting matrix is extremely large yet extremely sparse. We require smart
techniques for dealing with large amounts of information.

Traditional recommender systems are applied to problems such as product recommendation based
on user ratings. Such problems are two-dimensional: the data can be stored in a 2-D matrix in
which rows represent users and columns represent items. Each cell is a numerical rating given
by the user to the item. Tag recommender systems are more complex since there is an extra
dimension in the form of tags. A user can tag a resource using one or more words. Numerical
ratings such as ‘1’ and ‘5’ can be easily compared, but it is very hard for a computer to compare
e.g. ‘train’ and ‘car’. The fact that words can have multiple meanings adds complexity to the
challenge.

1.3.1. Natural Language Processing

The field of Natural Language Processing (NLP) focusses on computer systems for understanding
and interacting using human language. The language can be either written or spoken. Some
research topics in NLP are optical character recognition (OCR, reading handwritten text), au-
tomatic summarization, automatic translation, entity recognition, sentiment analysis and speech
processing.

1.3.2. Information Retrieval

Information Retrieval (IR) is a research field closely related to NLP in which the goal is to extract
relevant pieces of information from a large number of resources. Processing text is a primary

5

task in IR, in which NLP techniques are useful. The typical IR task is a search task that returns
a ranked list of items that are relevant to a search query. In Figure 1.3 we see a search for
“computer science books” on Amazon. 148033 results are returned, ordered from most to least
relevant. The screenshot shows the top 5 results. None of the titles of these items contain all three
words “computer”, “science” and “books”, yet Amazon’s system returns them as relevant to the
search query. In tag recommendation, the search query is a resource, and the relevant items are
tag-words.

Figure 1.3: Search query for “computer science books” on Amazon

1.3.3. Semantics

Semantics is the study of meaning, a challenge for both NLP and IR. Natural language contains
relationships between words, making it hard to interpret by computers. Some concepts in semantics
are:

1. Synonymy Different words having one meaning, e.g., “buy” and “purchase”.

2. Polysemy One word having multiple meanings, e.g. “bank” meaning a financial institu-
tion or a river bank.

3. Antonymy Words having opposite meanings, e.g., “plus” and “minus”.

4. Hyponymy A relation between an instance and its general term (its hypernym). For ex-
ample: “red”, “green” and “blue” are all hyponyms of “colour”. Hierarchical
relationships between words are often displayed using a tree structure, called a
taxonomy.

5. Word order For example:

• Bob walks to the park after dinner.

• Only Bob walks to the park after dinner. (nobody else walks to the park)

• Bob only walks to the park after dinner. (he does nothing else after dinner)

6

• Bob walks only to the park after dinner. (he goes nowhere else after dinner)

• Bob walks to the park only after dinner. (he doesn’t walk at other times)

1.3.4. Social and enterprise tagging strategies

Most research in the field of tagging strategies focusses on social tagging. These systems are
characterized by the fact that individual users tag or bookmark items, and share the items pub-
licly. Enterprise tagging knows a number of limitations. Social tagging systems don’t contain
restrictions, i.e., there is no structure or regulation of vocabulary, which is desirable in a corporate
environment. Corporate content is used for specific tasks, and everybody in a company benefits
from improved document findability. Also, the number of users in an enterprise environment is
generally much lower. Millions of people use services such as Facebook or Instagram, while a com-
pany with only a thousand employees would already be considered a large company. Privacy and
security issues are also important since some information might be kept secret, even to employees
within the same company. Lastly, the quality of tags is more important in enterprise tagging.
People tend to tag inconsistently and tag items for the best personal findability, while those tags
might not be of use to other users. Adding clear and consistent tags will benefit everybody in a
company.

While we do not focus specifically on social or enterprise tagging in this research, it is clear
that the need for sophisticated tag recommendation techniques is even more present in enterprise
tagging.

Social information systems are designed in different ways. Ontology is the study concerned with the
existence of categories of entities that (may) exist is a domain. An ontology is usually depicted in a
mindmap. A taxonomy is a hierarchical classification system in which the hierarchy, or categories
and sub-categories, is controlled by experts. The word taxonomy derives from the Greek words
taxis (arrangement or division) and nomos (law). Folksonomies are also hierarchical classification
systems, but differ from taxonomies because the tags or categories are not assigned by experts. All
content in folksonomies is collaboratively controlled by the community, i.e., users add their own
tags, based on their own vocabulary. Folksonomies are applied on many social media platforms,
e.g. Flickr3, Wordpress4 and Tumblr5.

1.4. Objectives

The objective of this work is to investigate and improve existing work in the field of tag recom-
mendation and gain knowledge and experience in the functioning of such algorithms. We want to
discover how content from documents can be extracted and handled in order to retrieve relevant
tag-words from documents, i.e. we would like to transform unstructured data into some form of
structured data in order to retrieve relevant information.

Given the fact that this research is a collaboration between Leiden University and Capgemini
Netherlands, we focus on ‘as real as possible’ challenges, i.e. we include o.a. processing speed of
algorithms in the testing of algorithms and are interested in finding an optimal number of tags to
recommend.

1.5. Formal problem definition

The tag recommendation problem consists of three components: users ui ∈ U , resources rj ∈ R
and tags tk ∈ T .

3https://www.flickr.com
4http://wordpress.org
5https://www.tumblr.com

7

https://www.flickr.com
http://wordpress.org
https://www.tumblr.com

Users U Tags T Resources R

u1

u2

...

ui

t1

t2

...

tk

r1

r2

...

rj

Figure 1.4: Tripartite structure of a tagging system

The users, tags and resources are connected by posts. A post is a triplet pij ∈ (ui, rj , Tij) where
Tij = {tk} is a set of tags between a user and a resource. The entire folksonomy is a set of posts.
We refer to a triplet as URT.

We formally define a folksonomy as F := (U, T,R, Y). U , T and R are finite sets whose elements
are respectively users u ∈ U , tags t ∈ T and resources r ∈ R. Y defines a ternary relation between
U , T and R: Y ⊆ U × T ×R, which are tag assignments.

From the folksonomy F we can derive various subsets:

Notation Description Definition

Yu All tag assignments by user u Yu := Y ∩ ({u} × T ×R)

Yt All tag assignments for tag t Yt := Y ∩ (U × {t} ×R)

Yr All tag assignments on resource r Yr := Y ∩ (U × T × {r})
Yu,t All tag assignments by user u using tag t Yu,t := Y ∩ ({u} × {t} ×R)

Tu All tags assigned by user u Tu := {t ∈ T |∃r ∈ R : (u, t, r) ∈ Y }
Tu,r All tags assigned by user u to resource r Tu,r := {t ∈ T |(u, t, r) ∈ Y }
P A set of all posts. A post consists of a

user, a resource and all tags that the user
assigned to the resource

P := {(u, S, r)|u ∈ U, r ∈ R,S = Tu,r, S 6= ∅}

Table 1.1: Folksonomy subsets

Users are usually represented by a user ID, tags can be any combination of characters, i.e. a string,
and the identification of resources depends on the system. Most document management systems
create a unique ID and store the resources on a hard drive and save the location of the file in a
database.

1.6. Research questions

We formulate three research questions:

RQ1. How can the content of resources be used to recommend accurate tags?

We focus on previously untagged resources, i.e. the resources uploaded by users have not been
uploaded before and thus no tags are added to it yet. We want to recommend tags based purely
on a resource’s content, without any other knowledge from e.g. the folksonomy.

RQ2. How can algorithms be combined in order to produce stronger tag
recommendations?

8

Combining multiple algorithms to produce a single, improved recommendation is a much applied
technique in other types of recommendation. In the tag recommendation challenge, there have
been only a handful attempts. The most well known one (to the best of our knowledge) was by
Lipczak et al. [14] which was submitted to the ECML PKDD 2009 competition and won in the
categories ‘content-based’ and ‘online’ tag recommendation and placed third in the ‘graph-based’
category. We would like to investigate how multiple tag recommenders can be combined and
optimized.

RQ3. Is there an optimal number of tags to recommend?

Most related research that deals with tag recommendation checks accuracy by testing a range of
tags, usually one to twenty tags. A real world system cannot simply return ‘a range of tags’, but
must return a specific number of tags to the user. Since we’re dealing with a real world system
which isn’t used in an experimental setting, we are interested in the optimal number of tags to
recommend. This could be a variable number, e.g. depending on a minimum score threshold or
user preference.

1.7. Thesis structure

This thesis is organized as follows. Chapter 2 describes several ‘building blocks’ for a tag recom-
mendation system, e.g. the general functioning of a typical tag recommendation system, open data
for testing the performance of tag recommendation algorithms, etc. Before entering resources into
a recommendation system, several ‘preprocessing’ techniques can filter garbage from the resources
which helps achieving better tag recommendation results. These techniques are discussed in Chap-
ter 3. Next, we discuss various tag recommendation techniques in Chapter 4. We suggest two new
algorithms in Chapter 5. All preprocessing techniques and recommendation algorithms have been
implemented and tested. This process has been described in Chapter 6. The experimental settings
and results are given in Chapter 7. We finish this thesis with a discussion (Chapter 8) and sug-
gestions for future work (Chapter 9). For readability of the thesis, we discuss the most important
results in the chapters mentioned above. The full results are given in the Appendices.

9

Chapter 2: Building blocks

Several ‘building blocks’ for creating a tag recommendation system are discussed in this chapter.
Existing software is listed in Section 2.1. Data is required for training and testing the performance
of recommendation algorithms. Open data, publicly available data useful for training and testing
algorithms, is discussed in Section 2.2. Linked datasets, which are huge datasets in which all data
is connected to form a network of information, are described in ??. An overview of the architecture
of a tag recommendation system is given in Section 2.3.

2.1. Software solutions

A number of text processing software packages are listed in this section. They offer various tools
helpful for the tag recommendation task. All listed packages are open source.

1. Apache Lucene (http://lucene.apache.org)
Apache Lucene is an open source library for full text indexing and search. It was first written
in Java and has been ported to many other programming languages.

2. Apache OpenNLP (https://opennlp.apache.org)
Apache OpenNLP is a Java-based open source library for NLP tasks such as tokenization,
sentence segmentation or parsing.

3. Apache Stanbol (https://stanbol.apache.org)
Apache Stanbol’s goal is to extend traditional content management systems with semantic
services.

4. NLTK (http://www.nltk.org)
Natural Language Toolkit is a Python library providing text processing tools such as tok-
enization, stemming or tagging. Tagging in NLTK is not tag suggestion but part-of-speech
(POS) labelling, i.e., detecting the category of words in a text. POS labels are linguistic
categories such as noun, verb or conjunction.

5. Language Detection (https://code.google.com/p/language-detection)
A language detection library made in Java by Google, able to detect 53 languages, trained
on Wikipedia articles. The library has been ported to Python (https://pypi.python.org/
pypi/langdetect).

6. Topic modelling libraries
There are several libraries offering topic modelling tools. These are very helpful since they
contain efficient and optimized implementations of topic modelling algorithms.

(a) Gensim (http://radimrehurek.com/gensim)
“Generate similar”, or Gensim[22], is a Python library supporting o.a. TF.IDF, LSI
and LDA.

(b) MALLET (http://mallet.cs.umass.edu)
“MAchine Learning for LanguagE Toolkit”, or MALLET, is a Java library offering
several natural language processing tools.

10

http://lucene.apache.org
https://opennlp.apache.org
https://stanbol.apache.org
http://www.nltk.org
https://code.google.com/p/language-detection
https://pypi.python.org/pypi/langdetect
https://pypi.python.org/pypi/langdetect
http://radimrehurek.com/gensim
http://mallet.cs.umass.edu

2.2. Open Data

Data from several collaborative tagging services can be used for testing tag recommendation
systems. A typical bookmarking or tagging service allows users to bookmark content (e.g. a
webpage) and add tags and a description to the content. BibSonomy1 allows users to tag and
share scientific publications. Delicious2 allows users to tag websites and CiteULike3 also allows
users to save, tag and share academic papers. Stack Exchange4 is a collection of communities,
each covering a specific topic. Users can ask and reply to questions. Each service allows users to
add tags from their own vocabulary, thus creating a folksonomy.

Several dumps from tagging services have been made for research purposes. Most of them only
consist of the URT triplets and not resource content. For this research, we required at least the
resource title. The following datasets were selected:

1. DeliciousT1405

DeliciousT140 contains 144574 random documents from the web, most in HTML format,
with corresponding tags and users from the Delicious service. It was created June 2008 and
published by A. Zubiaga et al. [33].

2. Wiki10+6

The Wiki10+ dataset was was created April 2009 and released by the same authors as the
DeliciousT140 dataset. It contains 20762 Wikipedia articles and associated users and tags
from the Delicious service [32].

3. MovieLens 10M7

The GroupLens research group made MovieLens (online movie recommender service) data
available in various sizes, containing respectively 100k, 1M and 10M movie ratings. The
ratings are expressed using a number between 1 and 5, but tags were also added to some
movies. The data is interesting for this research since the type of content is different than
the other datasets (movies vs documents). Users, movie titles and tags are given.

Lastly, it is noteworthy to mention Wikipedia serves dumps of all pages. Dumps from the English
Wikipedia can be downloaded from http://dumps.wikimedia.org/enwiki. Each page including
history can be downloaded. The English Wikipedia dump is 10.5GB in .bz2 format. Unpacked
its size is almost 50GB and contains a single XML file. Wikipedia articles are written using
templates8. The template mark-up is contained in the XML file so it has to be stripped be-
fore processing the dump. Wikipedia’s dumps are valuable since Wikipedia is available in 287
languages9 and 37 of those languages have over 100,000 articles from which information can be
extracted, e.g. topics and entities can be learned from the articles.

2.2.1. Data characteristics

Statistics from all datasets are given in Table 2.1. The densities are expressed in percentages,
showing how dense (or sparse) the relations are. For example, if there are 500 users and 1000
resources, and 2000 user-resource relations are given, the density is 2000

500×1000 × 100 = 0.4%. The
fact that social tagging services are extremely sparse is a large challenge for tag recommendation
systems.

1http://www.bibsonomy.org
2https://delicious.com
3http://www.citeulike.org
4http://stackexchange.com
5http://nlp.uned.es/social-tagging/delicioust140
6http://nlp.uned.es/social-tagging/wiki10+
7http://grouplens.org/datasets/movielens
8http://en.wikipedia.org/wiki/Help:Template
9http://en.wikipedia.org/wiki/Wikipedia#Language_editions

11

http://dumps.wikimedia.org/enwiki
http://www.bibsonomy.org
https://delicious.com
http://www.citeulike.org
http://stackexchange.com
http://nlp.uned.es/social-tagging/delicioust140
http://nlp.uned.es/social-tagging/wiki10+
http://grouplens.org/datasets/movielens
http://en.wikipedia.org/wiki/Help:Template
http://en.wikipedia.org/wiki/Wikipedia#Language_editions

Dataset DeliciousT140 Wiki10+ MovieLens 10M

Posts 144574 20762 82103

URT triplets 2012804 457708 95580

User/resource density (%) 0.00030 0.00265 0.00013

User/tag density (%) 0.37895 0.72037 0.06604

Resource/tag density (%) 0.02071 0.02223 0.05664

Tag/tag density (%) 0.14251 0.07116 0.02328

R
es

o
u

rc
es

Unique resources 144574 20762 7601

Avg users per resource 1 1 10.80

Avg unique users per resource 1 1 7.30

Avg tags per resource 13.92 22.05 12.57

Avg unique tags per resource 13.92 22.05 9.36

U
se

rs

Unique users 3378 377 4009

Avg resources per user 42.80 55.07 20.48

Avg unique resources per user 42.80 55.07 13.84

Avg tags per user 595.86 1214.08 23.84

Avg unique tags per user 254.72 714.34 10.92

T
ag

s

Unique tags 67217 99162 16529

Avg tags per post 13.92 22.05 1.16

Avg users per tag 29.94 4.62 5.78

Avg unique users per tag 12.80 2.72 2.65

Avg resources per tag 29.94 4.62 5.78

Avg unique resources per tag 29.94 4.62 4.30

Avg related tags per tag 567.68 112.63 9.06

Avg unique related tags per tag 95.79 70.56 3.85

Table 2.1: Dataset statistics

Most datasets are post-core level 1 datasets (described in Subsection 2.2.2). We see users tagged
each resource only once in DeliciousT140 and Wiki10+. This means that tag recommenders are
probably more dependant on resource content than graph-based relations given these datasets.
We also see large differences between the datasets, e.g. the vocabularies of users in DeliciousT140
and Wiki10+ are quite large, contrary to MovieLens users.

2.2.2. Post-core selection

Tag recommendation algorithms are often evaluated on post-core datasets, which are subsets of
complete datasets [12]. Post-core level n of a dataset consists of all posts in which users, resources
and tags appear in n or more posts. The goal is to work with dense data to allow algorithms to
perform good and reduce the cold start problem.

Over 60% of all users in the DeliciousT140 dataset tagged two or more documents. However, the
dataset only contains documents tagged by a single user. Thus, post-core >1 datasets could not
be made.

12

2.3. IR system architecture

A typical information retrieval system consists of two parts: an offline and an online part. The
offline part consists of training a model on a large amount of data, which takes long and is thus
impractical to do real-time. During this stage model parameters are learned and indexes are
created. The online part is performed real-time. After a user makes a request, a recommender
service is expected to return results immediately and it should thus be very efficient. Generally it
consists of a simple calculation or lookup in the pre-computed index.

In Figure 2.1 we see a simplified model of such a system: training data is processed in the offline
stage and its results are stored in memory or a database. In the online stage, a user submits a
document to a recommender service, which processes only the single document. The recommender
service fetches the precomputed data, inserts the document into the learned model, and returns
the tags.

Offline
Training

documents

Model
training

Model parameters
Indexes

etc.

Online Document
Recommender

service
Tags

Figure 2.1: IR system architecture

13

Chapter 3: Text preprocessing

Text preprocessing is intended to transform raw textual data into usable data by removing and/or
converting unnecessary data. The expression “garbage in, garbage out” is used in the computer
science field to indicate that no matter how good an information processing system is, when one
starts with garbage, one always ends with garbage.

This section describes various steps in a text preprocessing-process. Techniques described in this
chapter aren’t ‘holy grails’ and are active fields of research. They all have strengths and weaknesses
and it is questionable whether the techniques must be used.

3.1. Text clean-up

Documents come from different sources and need to be handled differently in order to extract usable
textual data. Many documents from the web come in HTML format, which contain elements such
as , which can be stripped. A text extraction algorithm is required for
each format, e.g., HTML, XML, PDF or Word-documents.

Also, a filter for the word length can be applied. Text preprocessing tools generally remove one-
or two-letter words such as “a” and “of”. A maximum word length can also be applied.

Infrequent words may be erased by setting a minimum frequency threshold. Rare words are
unlikely to identify documents and over 50% of distinct words may occur only a single time, so
removing infrequent words will yield large savings in document size [6].

Lastly, text can be converted to lowercase characters. The meaning of words will not change,
but the number of unique words in a text can be reduced by converting uppercase characters to
lowercase characters.

3.2. Stop word removal

Tag words should describe and identify a document. Words such as ‘the’ or ‘and’, which typically
occur in almost every document are not descriptive and can therefore be filtered out. Highly
frequent words can be identified by setting a maximum frequency threshold, e.g. by counting the
number of documents a word occurs in, or by maintaining a list of stop words, and checking every
word in a document against the list of stop words. A word is removed if its frequency appears
above the threshold or if it is present in the stop word list. Stop words are language-specific and
lists are publicly available for most languages, although domain-specific lists might be used. For
example, the word ‘can’ appears in most public stop word lists, but might be distinctive in the
document collection of a recycling company [6].

Stop word removal is an easy method for reducing file size (documents in the DeliciousT140 dataset
consist of 20% – 30% stop words) and improving efficiency of the system since stop words aren’t
indexed.

14

3.3. Stemming

Stemming is the process of ‘linguistic normalisation’, i.e., a technique for transforming derivations
of a word to the stem of the word. The stem (also called root) of a word is the most basic form
of a word. For example, the stem of the words ‘driving’, ‘drove’ and ‘driven’ is ‘drive’.

Stemming programs are called stemmers, and unfortunately they are not perfect. Combining
words by stemming could reduce the file size of most documents up to 50% [25]. However, some of
problems are computational time (stemming algorithms are computationally expensive), accuracy
and languages. Most stemming techniques are applied to English language, although stemmers for
other languages do exist. The three major stemming algorithms are Porter, Snowball (Porter2)
and Lancaster (Paice/Husk), ordered from least to most aggressive.

3.4. Tokenization

Tokenization is the process of splitting text into tokens (chunks of text). A tokenizer can split texts
into words, sentences or other units. Generally a rule based system using regular expressions is
employed. Western European languages are handled relatively well. Tokenizers are unfortunately
not perfect, e.g. a classic example where naive tokenizers fail is “New York-based”, where the
tokenizer splits at the whitespace. Advanced tokenizers use rules for handling i.a. e-mail addresses,
phone numbers, city names and dates.

Multilingual tokenization is complicated. Languages such as Dutch tend to concatenate most
compound words (e.g. “huizenprijzen”), while English tends to keep such words separated by
dashes or spaces (e.g. “housing prices”). Compound word rules are complex and change over
time, making it hard to build perfect tokenizers.

3.5. Part-of-speech tagging

Part-of-speech tagging, or POS tagging, is the process of identifying the lexical class of words. For
example the sentence “this research is very interesting”:

This research is very interesting

DT (determiner) NN (singular
noun)

VBZ (verb, 3rd
person singular

present)

RB (adverb) JJ (adjective)

Table 3.1: POS tagging example

The English language is divided into eight lexical categories. By filtering certain categories the
number of words in a document can be vastly reduced. For example, filtering only nouns in the
example would result in only “research” and removing 4 out of 5 words.

3.6. Document representation models

After documents are stripped, cleaned and filtered, the last step is to represent the data in a way
that is usable by recommender models, also called mid-level representation. One way to store URT
triplets is to create a three-dimensional matrix and store the number of times a user u tagged a
resource r with tag t (usually once). This requires a u × r × t-matrix. Most entries will be zero,
and given the smallest dataset in this paper (Wiki10+), this results in 20762 × 377 × 99162 =
776 billion entries. If each entry takes one byte, this would result in storing 776 gigabytes of data.
This is obviously a very inefficient way of storing the data since non-existing URT triplets also
take up one element in the matrix. More efficient mid-level representation models are discussed
in this subsection.

15

3.6.1. Bag of words (BOW)

A common way to represent documents in the form of a matrix is ‘bag-of-words’ (BOW). From a
document, or a collection of documents, an n × t document-term matrix is constructed, where n
is the number of documents and t is the number of distinct terms. For example:

Document 1 Bob walks to the park only after dinner.

Document 2 Bob never walks to the park by himself.

Document 3 Bob always walks with the dog to the park.

From these documents, a dictionary or vocabulary is created where each term is given a unique
id:

1. Bob

2. walks

3. to

4. the

5. park

6. only

7. after

8. dinner

9. never

10. by

11. himself

12. always

13. with

14. dog

Next, a document-term matrix is created in which each document is represented by a vector of
word-counts. Word order is lost using this model.

`````````̀Document
Word

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Document 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
Document 2 1 1 1 1 1 0 0 0 1 1 1 0 0 0
Document 3 1 1 1 2 1 0 0 0 0 0 0 1 1 1

Table 3.2: Documents represented by word count vectors.

This representation faces the same issue as shown in the example at the start of this subsection:
the matrix grows very fast as more documents are added (it is in fact the same, but without the
third dimension of users). Therefore, a BOW model is stored more efficient using two steps:

1. Create dictionary of words

2. Create sparse BOW vectors

First, all documents in a dataset are read and all distinct words are stored. This forms the
dictionary. All words are given a unique identifier. After that, all documents are read a second
time, but now a BOW vector is created for each document. Given the example above, documents
are represented as follows:

Document 1 [(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,1)]

Document 2 [(1,1), (2,1), (3,1), (4,1), (5,1), (9,1), (10,1), (11,1)]

Document 3 [(1,1), (2,1), (3,1), (4,2), (5,1), (12,1), (13,1), (14,1)]

User-tag relations can be stored in similar fashion. This greatly reduces the number of stored
elements since non-existing tag assignments are not stored. Since documents and folksonomies are
extremely sparse, this is a much needed feature. This model is also abbreviated as sBoW (sparse
Bag-of-Words) [31].

3.6.2. TF.IDF

From the BOW model a TF.IDF model (described in Subsection 4.2.2) can be derived in which
the IDF scores can be pre-computed for each term. When a new document is processed, only the

16



BOW-vector for the new document has to be generated and inserted into the TF.IDF model. For
each term in a corpus, its IDF score is calculated as:

IDFt = log
D

dft
(3.1)

Where D is the number of documents in the corpus and dft is the document frequency of term t
(the number of documents in which term t appears). The base of the logarithm is typically set to
2 or 10. Given the three documents above, this results in 14 IDF-scores.

1. 0

2. 0

3. 0

4. 0

5. 0

6. log( 3
1 )

7. log( 3
1 )

8. log( 3
1 )

9. log( 3
1 )

10. log( 3
1 )

11. log( 3
1 )

12. log( 3
1 )

13. log( 3
1 )

14. log( 3
1 )

Since a dictionary can be very large (100000+ terms), the size of the dictionary is often limited
to e.g. 50,000 or 100,000 terms. The dictionary of single documents is often limited to a small
number of terms such as 100 or 1000. Limiting the dictionary size does have one disadvantage: if
a new document is inserted into a TF.IDF model and a term is unknown in the pre-computed IDF
scores, a TF.IDF score cannot be computed for the term. However, given a large enough dictionary
this should not be a problem since most other terms will be present in the dictionary.

3.6.3. Other representation models

An often discussed limitation of the BOW and TF.IDF model is the lack of ability to handle
sentiment [31]. A dictionary can contain 100,000+ terms but a single document contains a much
smaller dictionary, e.g. 100 – 1000 terms. Each word is considered to be unique in the BOW
and TF.IDF model. However, natural language contains synonyms and thus many terms can
be closely related. For example, the English word with the most synonyms is “good” (300+
synonyms). Good can also be described as e.g. “excellent”, “wonderful” or “splendid”. However,
without semantics these three words have no relation.

Two representation models without this limitation are Dense Cohort of Terms (dCoT) [31] and
Latent Dirichlet Allocation (LDA) [2]. dCoT maps high-dimensional sparse vectors into low-
dimensional dense representations. The mapping is trained to reconstruct frequent words from
infrequent words. When removing common words from a text, the model should reconstruct the
removed words from the remaining words. LDA (described in more detail in Subsubsection 4.2.3)
is a topic modelling framework. It models co-occurring words into topics. For example, one could
have a topic “computers” with words ‘network’, ‘hardware’, ‘networks’, ‘keyboard’ and ‘mouse’.
Another topic could be “animals” containing the words ‘cat’, ‘cats’, ‘dog’, ‘mouse’ and ‘pets’.
Since words can have multiple meanings, they can belong to multiple topics.

17



Chapter 4: Tag recommendation techniques

Tag recommendation techniques are based on different assumptions and are applied to different
perspectives of data, e.g. a user’s tag history or a document’s title. The techniques described
in this section are applied in order to predict a set of tags that a user will most likely add to a
resource.

Several techniques for tag recommendation have been proposed over the years. Most are variations
on one of the few major algorithms. An overview of different types of algorithms and their
characteristics is given in this chapter. The types are divided over sections, where each section
discusses one type of algorithms. Section 4.1 describes popularity based methods. Content based
and graph based methods are respectively addressed in Section 4.2 and Section 4.3 and hybrid
approaches, in which models are combined, are discussed in Section 4.4. Lastly, measurements for
measuring the performance of algorithms are discussed in Section 4.5.

4.1. Popularity based methods

Popularity-based recommenders are naive methods but very simple and fast to apply since they
simply sort tags by frequency.

4.1.1. Global popular tags

The simplest solution is to recommend the top tags in a dataset sorted by frequency. The most
popular tags for any user u ∈ U and resource r ∈ R are calculated from the set Yt (where |Y |
denotes the cardinality of set Y ):

T̂u,r :=
n

argmax
t∈T

(|Yt|) (4.1)

4.1.2. User popular tags

Variations shown in [26] select the most popular tags by (a combination of) user, resource or item.
For example, the following recommends the most popular tags from a user’s set of tags and is thus
presumably better at recommending tags (if the user has previously tagged resources):

T̂u,r :=
n

argmax
t∈T

(|Yu,t|) (4.2)

These recommenders are very simple and fast to use, but have several drawbacks. First, they suffer
from the cold start problem. The global popular tag recommender suffers only minimally from
this problem, but more specific recommenders require more training in order to produce relevant
tags. When a user processes his first document, he won’t have a tag history and the global tag
recommender can be used as a backup.

18



4.2. Content based methods

Content based recommendation techniques focus on extracting features and structure from re-
sources themselves, such as the title, headings or anchor tags.

4.2.1. Content sources

Different sources of content can be URL, resource content, resource title, etc. File types such as
PDF store data unstructured making it difficult to extract text according to any structure from
the document. Other file types such as XML and HTML store the data structured, allowing to
extract separate pieces of documents. These types are referred to as semi-structured, since they
don’t reside in a database but they do contain elements which follow a pre-defined structure. The
impact of document titles was researched by Lipczak et al. in [15]. Findings showed “a strong
relation between the resource title and the choice of tags”.

We checked this claim on the DeliciousT140 dataset. Titles, h1 to h6 tags, anchor tags and
remaining content were separately extracted from HTML documents and the ratio between words
and user-tags was averaged over all documents. The user-tag-density of each source, ordered from
most to least dense, showed to be (1) title, (2) h1, (3) anchor tags, (4) h2, (5) h3, (6) remaining
content, (7) h4, (8) h5 and (9) h6. The experiments and results are discussed in Section 7.1.

4.2.2. TF.IDF

Term Frequency Inverse Document Frequency (TF.IDF) is a term-weighting algorithm which shows
the importance of a term t within a document d within a corpus D. The IDF function was proposed
in 1972 [23].

Term Frequency

The term frequency TFt,d defines the frequency of term t in document d. The TF value is typically
normalized in some way to prevent a bias towards longer documents. For example:

TFt,d = nt,d (4.3)

TFt,d =
nt,d∑
k nk,d

(4.4)

TFt,d =
nt,d

maxknk,d
(4.5)

The variable nt,d is the number of occurrences of term t in document d. The denominator in
Equation 4.4 denotes the sum of all occurrences of all terms in a document d, which is the number
of words in the document. The denominator in Equation 4.5 gives the maximum number of
occurrences of any term in a document.

Inverse Document Frequency

The inverse document frequency IDFt shows the rarity of a term in a document collection:

IDFt,D = log
D

dft
(4.6)

Where D is the number of documents in the collection and dft is the document frequency of term
t, the number of documents containing the term. The IDF scores can be pre-computed from a

19



corpus, after which only the TF scores (small computation) will need to be computed and IDF
scores fetched for calculating the complete TF.IDF score.

TF.IDF

The TF.IDF statistic is calculated as TFIDFt,d,D = TFt,d × IDFt,D. The idea is that words ap-
pearing in all documents become less important because of the IDF measure, and words appearing
a lot in a single document become important as a result of the TF measure. When processing a
previously unseen document, the TF scores for the given document are calculated and multiplied
by the pre-computed IDF scores.

There are several drawbacks. State of the art research focuses on semantics, i.e., identification of
topics, since language is complex and contains synonyms. The vocabulary of TF.IDF is limited to
the words within a document, which are often not sufficient as tags. There’s no way to deal with
synonyms or polysemes. From a performance viewpoint, pre-processing the corpus takes a large
amount of memory and requires a lot of computational time. To train the model, more documents
have to be added, increasing the required memory to store the processed corpus.

Also, normalization of the TF vector does not benefit the tag recommendation task in which the
most important terms for individual documents are determined. For example, given a document
with three terms with respective TF scores 5, 10 and 15. Normalization will not change the
proportion between the scores, e.g. maximum frequency normalization will result in 1

6 , 1
3 and 1

2 .
If the document contents would be duplicated the resulting TF scores will be 10, 20 and 30. If
these scores were to be compared to the original document’s TF scores, the duplicated document’s
TF scores are higher since there are more words in the document. Normalization will balance
these scores and benefit applications such as document similarity measures.

Variations

Variations on TF.IDF have been proposed in order to emphasize different characteristics of docu-
ments. Basili et al. [4] proposed IWF, Inverse Word Frequency, as a variation on IDF:

IWFt,D = log
N

ft
(4.7)

Where N is the sum of all frequencies of words, i.e. the total number of words in the corpus. The
variable ft is the overall frequency of term t, instead of the the document frequency used in the
IDF measure. The IWF measure is also referred to as Inverse Term Frequency (ITF) in related
literature. Also, to compute the final importance of a term, Basili squared the IWF measure since
it is too biased by the term frequency [4].

TF.IWFt,d = TF × IWF × IWF = nt,d ×
(
log

N

ft

)2

(4.8)

Other variations are included in the SMART (System for the Mechanical Analysis and Retrieval
of Text) Information Retrieval System, developed at Cornell University [24]. Some search engines
allow different weighting schemes for queries vs. documents. The SMART model defines several
weighting combinations.

The SMART notation is written in the format “ddd.qqq”, where the ddd specifies a document
vector weighting scheme and qqq specifies a query vector weighting scheme, e.g. lnc.ltc. We can
apply the term and document frequency variants to the tag recommendation task.

20



Term Frequency Document Frequency Normalization

n (natural): tft,d n (no): 1 n (none): 1

l (logarithm): 1 + log(tft,d) t (idf): log( Ndft ) c (cosine): 1√
w2

1+w
2
2+...+w

2
M

a (augmented): 0.5 +
0.5×tft,d
max(tft,d)

p (prob idf): max
(

0, logN−dftdft

)
b (byte size): 1/CharLengthα, α < 1

b (boolean):

{
1 if tft,d > 0

0 otherwise

L (log average):
1+log(tft,d)

1+log(avet∈d(tft,d))

Table 4.1: SMART system

4.2.3. Topic modelling

The concept of topic modelling was first addressed by Papadimitriou et al. in 1998 [20]. Major
publications were made by T. Hofmann with the introduction of Probabilistic Latent Semantic
Indexing (PLSI) in 1999 [8] and D. Blei with the introduction of Latent Dirichlet Allocation (LDA)
in 2003 [2].

Most search engines such as Google Search use algorithms based on keywords, number of connect-
ing pages, etc. to find webpages related to a query. Since natural language contains synonymy,
polysemy and other word relationships, simple search engines are claimed to be inaccurate. For
example, a document could contain words such as “auto”, “bonnet” and “boot”, while a user
searches for “car”, “hood” or “trunk”. Semantic search engines (e.g. DuckDuckGo1) take word
semantics into account. E.g., a query for “set” on DuckDuckGo first shows multiple meanings of
the word ‘set’ in the fields of ‘Mathematics and Programming’, ‘Chemistry’, ‘Psychology’, ‘Tech-
nology’, etc.

Topic models are mathematical frameworks for discovering semantically coherent clusters of words,
known as topics. The topics are called latent topics, which are present but hidden topics. Figure 4.1
shows the challenge of topic modelling: there are various topics and words can be mapped to one
or more topics.

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

?

Figure 4.1: Problem of mapping topics to words

The idea behind topic modelling is that documents consist of topics, which are distributions over
words. In the language modelling domain, topics are considered as ‘a probability distribution over

1https://duckduckgo.com

21

https://duckduckgo.com


a vocabulary of words’. Each word in a vocabulary has a probability between 0 and 1 to belong
to each topic.

LDA

Latent Dirichlet Allocation (LDA) is a topic modelling framework. It cannot be applied directly
to the tag recommendation challenge as it finds topics that belong to a document, but it is unclear
how tags can be suggested from those topics. LDA was applied to tag recommendation by Krestel
et al. [11], but they trained an LDA model on tag-words from already tagged resources with the
goal of extending the set of tags for each resource. This research focusses on recommending tags
for previously untagged resources. However, their method for suggesting tags from learnt topics is
applicable. Per word, they select the topic with the highest probability for that word, and select
all words from the topic with a probability above a certain threshold.

Diaz-Aviles et al. [5] applied LDA to tag recommendation for previously untagged documents.
They extract a document’s content and combine this with the titles and summaries from the top
ten search results of BOSS (Yahoo!’s open search platform). They train an LDA model ‘on-the-
fly’ on the combined corpus and select the first word from all topics (the number of topics was
varied).

An extension to the LDA model was published by Si et al. [27] which they called ‘Tag-LDA’.
Standard LDA models documents, topics and words. Tag-LDA also models tags. After training
their model, recommendations are made for new documents by inferring the probability for tags
given the document and the top n tags are selected.

We see three different approaches for recommending tags for a document: (1) select top n words
from topic with highest probability, (2) select first word from top n topics sorted by probability
and (3) infer tag probabilities from Tag-LDA model. Unfortunately all three methods were applied
on different datasets.

θ z w N
M

α
K

βk η

Figure 4.2: Smoothed LDA model

Due to complexity and availability of great topic modelling libraries, we use the gensim Python
library for testing with LDA. An older topic modelling framework called LSI is also provided. We
implemented a tag recommendation function as suggested in (1) ourself.

4.3. Graph based methods

Graph based tag recommendation focusses on learning relations between users, resources and
tags from previous posts. These algorithms are typically tested on post core level > 1 datasets.
Well-known algorithms are collaborative filtering (applied to the tag recommendation task in i.a.
[18, 10, 29]) and FolkRank [10]. In collaborative filtering, the idea is to recommend tags based
on the recommendations on similar resources. Similar resources are determined by calculating
a similarity measure such as Cosine similarity between all resources, after which a set of tags is
selected from those resources.

In this research we focus on content-based tag recommendation, the suggestion of tags on pre-
viously unseen resources in post core level 1 datasets. Therefore we do no include graph-based
techniques in the experiments.

22



4.4. Hybrid approaches

Various techniques has been proposed for tag recommendation. However, the number of recom-
menders in which techniques are combined to ‘join forces’ appears to be limited. The goal of a
hybrid approach is to combine multiple ‘weak’ recommenders into a single ‘strong’ recommender,
as shown in Figure 4.3.

Document

Algorithm 1

Algorithm 2

...
Algorithm n

Tags 1

Tags 2

...
Tags n

recommendations

Weak

Merger

Tags

recommendation

Strong

Figure 4.3: Hybrid tag recommendation system setup

Lipczak et al. published two papers in which multiple recommenders are combined [14, 16]. All
recommenders produce a set of tags with scores s ∈ [0, 1]. Each recommender’s set of tags is
combined by a merger which takes two recommendation sets and re-scores the tags given a merge
coefficient pmerge ∈ [0, 1] which represents the importance of both recommendations. The merge
value determines the accuracy of the system and is learned from the training data.

Burke [3] lists seven types of methods for combining multiple recommenders:

Type Description
Weighted The scores (or votes) of several recommendation techniques are combined together to produce a single recommendation.
Switching The system switches between recommendation techniques depending on the current situation.
Mixed Recommendations from several different recommenders are presented at the same time.
Feature combination Features from different recommendation data sources are thrown together into a single recommendation algorithm.
Cascade One recommender refines the recommendations given by another.
Feature augmentation Output from one technique is used as an input feature to another.
Meta-level The model learned by one recommender is used as input to another.

Table 4.2: Hybridization method types as listed by Burke

In other types of recommender systems combining models is very common to achieve better ac-
curacy. In the Netflix challenge, a million-dollar prize competition where the goal was to predict
user ratings as accurately as possible, the winning team used gradient boosted decision trees to
combine over 500 models [9]. Using a large amount of models might improve accuracy by minimal
differences but will not benefit efficiency in a real-time system. However, using a combination of
just three models an RMSE close to the winning RMSE was be achieved2.

4.4.1. Ensemble types

Ensemble learning is the field of research concerned with combining multiple models in order to
solve computational challenges [17]. Data fusion is a particular application of ensemble learning.
A tag recommender system will output a set of tags and multiple recommenders will output
multiple sets of tags. Combining those sets can result in improved accuracy and is known as data
fusion.

2http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary

23

http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary


Bagging

Bagging (Bootstrap Aggregation) is designed to reduce the variance of predictions. Each model
in the ensemble has equal weight. In order to reduce model variance, each model in the ensemble
is trained using a randomly drawn subset of the training set.

Boosting

Boosting algorithms try to combine methods using a weighted average approach.

Stacking

Stacking consists of two phases: first individual models are learned. Next, the output of all models
is given to a second learning algorithm producing the final results.

4.4.2. Ensembles for tag recommendation

Fox and Shaw defined several popular combination methods [7] which have become the standard
methods for data fusion. Before combining, the scores in each list must be normalized within that
list. The most used normalization was proposed by Lee [13]:

scorenormalized =
scoreoriginal − scoremin
scoremax − scoremin

(4.9)

After normalization, Fox’s and Shaw’s methods shown in Table 4.3 can be applied. There are k rec-
ommendation models and each model returns tags tj with an associated score skj [19], e.g.:

[(t1, s11), (t2, s12), (t3, s13), (tj , s1j)]
[(t1, s21), (t4, s24), (t5, s25), (tj , s2j)]
[(t3, s33), (t4, s34), (t6, s36), (tj , s3j)]

...
[(tj , skj), (tj , skj), (tj , skj), (tj , skj)]

Where j = {1, 2, . . . } (j word ids in dictionary) and k = {1, 2, . . . } (k recommenders). Each
recommender returns a (different) set of words. As we see in the example, word t1 is recommended
by recommenders k1 and k2, but not by k3.

The methods listed above are unweighted, i.e., they all have equal influence in the final recom-
mendation. Intuitively this is odd: each recommendation engine’s performance is differently, so
they should influence the final result differently. Bartell et al. [1] applied a linear combination to
combine multiple recommenders:

combined =

N∑
n=1

wn ∗ skj (4.15)

Where weight w in range [0,1]. The next subsection describes Lipczak’s system in which a com-
bination of weighted recommendations are applied, and weights are learned on a part of the
data.

24



Method Description
CombMIN Minimum of all scores for a tag.

CombMIN(tj) = min(s1j , s2j , . . . , skj) (4.10)

CombMAX Maximum of all scores for a tag.

CombMAX(tj) = max(s1j , s2j , . . . , skj) (4.11)

CombSUM The sum of all scores for a tag.

CombSUM(tj) =
∑i=1

k
sij (4.12)

CombANZ The CombSUM score divided by number of times a tag was recommended.

CombANZ(tj) =
CombSUM(tj)

|{s1j , s2j , . . . , skj}|
(4.13)

CombMNZ The CombSUM score times the number of times a tag was recommended.

CombANZ(tj) = CombSUM(tj)× |{s1j , s2j , . . . , skj}| (4.14)

Table 4.3: Combination methods proposed by Fox and Shaw

4.4.3. Lipczak’s tag recommendation system

Lipczak et al. presented a system [16, 14] consisting of multiple tag recommenders which are
combined to output a single recommendation. His system won 2 out of 3 tasks at the ECML
PKDD 2009 challenge. The system was applied to BibSonomy data. His system consists of six
basic recommenders:

1. URL recommender

2. Title recommender

3. TitleToTag recommender

4. TagToTag recommender

5. Resource recommender

6. User recommender

The URL and title recommenders are trained on words found in respectively the URL and title.
Each word’s score was calculated as the number of times the word was used in a title/URL and as a
tag, divided by the number of times the word was used in the title/URL, as in Equation 4.16.

scoreword =
|frequency(title∩tag)|
|frequencytitle|

(4.16)

Words with a score below 0.05 were removed, these are assumed to be of too low quality. The
resulting word scores are rescored using a ‘leading precision rescorer’ as in Equation 4.17 since
they’re the result of independent recommenders. This ensures that tags from more accurate

25



Figure 4.4: Lipczak’s tag recommendation system

recommenders will have higher scores in the final tag recommendation. The weights are displayed
next to the arrows in the Figure 4.4.

s
′

i =
avgPrecisionAt1× si

s1
(4.17)

Each recommender returns a set of tags t with scores s: (tj , skj). The Precision
(

|correct tags|
|recommended tags|

)
for each recommendation was calculated and the highest score s1 was given the average precision
score. Following scores si were re-calculated using the leading precision rescorer.

The result of the title recommender is used as input for the TitleToTag recommender. For each
word in each post title, the related tags are stored. The related tag scores are calculated as the
title recommender’s score times the TitleToTag confidence, which is the co-occurrence frequency
of the titleword and the tagword, divided by the frequency of the titleword:

scoreTitleToTag = scoreTitleRecommender ×
frequency(titleword∩tagword)

frequencytitleword
(4.18)

In similar fashion, the combined result of the URL and title recommenders is used as input for the
TagToTag recommender. This recommender captures tag-to-tag relations and the word scores are
calculated as the combined tag scores times the TagToTag confidence, which is the co-occurrence
frequency of two words t1 and t2, divided by the frequency of t1. The ‘sumProb merger’ shown in
Figure 4.4 merges two probabilities, i.e. tag scores, using the equation in Equation 4.19:

scoremerged = 1−
∏
i

(1− scorei) (4.19)

Lastly, the resource and user recommenders base their recommendations on respectively the re-
source tag history and the user tag history. The resource tag scores are calculated as number of

26



occurrences of the tag divided by the resource frequency. The user recommender is a combination
of tag frequency and tag recency in the user’s set of tags. The two sets are merged by testing for
the best Precision and combined into a single set of user related tags.

The ‘multiplication merger’ merges two sets of tag recommendations by multiplying the scores of
tags occurring in both sets.

Lipczak’s system uses a combination of ensemble methods listed in the previous subsection. The
URL and title recommender’s input is merged using a stacking technique. The (merged) result
is then passed the TitleToTag and TagToTag recommenders, called meta-level hybridization by
Burke. The scores are normalized by the leading precision rescorer and the resource and user
related tags are merged using a multiplication merger which is similar to the methods proposed
by Fox and Shaw.

Data flow

To demonstrate the functioning of Lipczak’s system, we show the performed calculations by pro-
cessing a post with the title “Content-based tag recommendation algorithms for unstructured
data”. The results from each step are shown in Table 4.4. Step (1) is preprocessing of the ti-
tle. We skip some preprocessing methods for this example and apply tokenisation, conversion
to lowercase and stop word removal, which results in [“content-based”, “tag”, “recommenda-
tion”, “algorithms”, “unstructured”, “data”]. In step (2), the tokens are used as input for the
TitleRecommender. This returns the same tokens, paired with a score. In step (3), the TitleRe-
commender’s result is used as input for the TitleToTag and TagToTag recommenders. These
recommenders retrieve a list of related words and scores for each word. In step (4), the related
scores are multiplied by the scores from the TitleRecommender. Next, in step (5), all scores are
merged using the SumProb merger in Equation 4.19. Thereafter, in step (6), all scores are rescored
by a pre-computed merge coefficient. The value of the merge coefficient is determined by rescoring
using a range of values and testing the Recall@5. Let’s assume the merge coefficient between
the TitleToTagRecommender and the TagToTagRecommender is 0.3, meaning TitleToTagRecom-
mender*0.3 and TagToTagRecommender*(1-0.3). Finally, in step (7), we merge the results of both
recommendations using, again, the SumProb merger.

For illustration, we created the network in Figure 4.5. Each node represents a word. A post
containing three words is inserted, activating three nodes in the Title recommender. The title
recommender result is forwarded to the TitleToTag and TagToTag recommender. In the Title-
ToTag recommender, each word contains a set of related words. Once a word is activated, the
set of related words (red nodes in the TitleToTag recommender) is forwarded for the final result.
In the TagToTag recommender, the words form a different network structure. Each word can be
connected to other words. When words from the Title recommender are passed to the TagToTag
recommender, related words are selected for recommendation from the TagToTag network (red
nodes). We apply a single pass for selecting related words.

27



Figure 4.5: Network of words in Lipczak’s system. Blue nodes are selected from the post’s title
but not recommended. Red nodes are recommended.

Raw title “Content-based tag recommendation algorithms for unstructured data”

(1) Preprocessed title [“content-based”, “tag”, “recommendation”, “algorithms”, “unstructured”, “data”]
(2) TitleRecommender [(“content-based”, 0.7), (“tag”, 0.8), (“recommendation”, 0.6), (“algorithms”, 0.4), (“unstructured”, 0.2), (“data”, 0.3)]

(3) TitleToTagRecommender
result

(“content-based”, 0.7): [(“recommendation”, 0.8), (“content”, 0.4), (“instruction”, 0.3)]
(“tag”, 0.8): [(“tags”, 0.9), (“metadata”, 0.6), (“documents”, 0.5)]
(“recommendation”, 0.6): [(“recommendation”, 0.9), (“collaborative”, 0.4), (“system”, 0.3)]
(“algorithms”, 0.4): [(“model”, 0.9), (“technique”, 0.8), (“recommendation”, 0.7)]
(“unstructured”, 0.2): [(“data”, 0.9), (“documents”, 0.6), (“database”, 0.5)]
(“data”, 0.3): [(“data”, 1), (“mining”, 0.8), (“processing”, 0.7)]

(3) TagToTagRecommender
result

(“content-based”, 0.7): [(“recommendation”, 0.9), (“data”, 0.8), (“algorithms”, 0.7)]
(“tag”, 0.8): [(“tags”, 0.9), (“documents”, 0.6), (“content”, 0.5)]
(“recommendation”, 0.6): [(“collaborative”, 0.9), (“documents”, 0.6), (“system”, 0.5)]
(“algorithms”, 0.4): [(“math”, 0.9), (“technique”, 0.8), (“system”, 0.7)]
(“unstructured”, 0.2): [(“data”, 0.9), (“documents”, 0.8), (“pdf”, 0.4)]
(“data”, 0.3): [(“science”, 0.9), (“mining”, 0.9), (“text”, 0.7)]

(4) TitleToTagRecommender
score multiplication

[(“recommendation”, 0.7*0.8=0.56), (“content”, 0.7*0.4=0.28), (“instruction”, 0.7*0.3=0.21)]
[(“tags”, 0.8*0.9=0.72), (“metadata”, 0.8*0.6=0.48), (“documents”, 0.8*0.5=0.4)]
[(“recommendation”, 0.6*0.9=0.54), (“collaborative”, 0.6*0.4=0.24), (“system”, 0.6*0.3=0.18)]
[(“model”, 0.4*0.9=0.36), (“technique”, 0.4*0.8=0.32), (“recommendation”, 0.4*0.7=0.28)]
[(“data”, 0.2*0.9=0.18), (“documents”, 0.2*0.6=0.12), (“database”, 0.2*0.5=0.1)]
[(“data”, 0.3*1=0.3), (“mining”, 0.3*0.8=0.24), (“processing”, 0.3*0.7=0.21)]

(4) TagToTagRecommender
score multiplication

[(“recommendation”, 0.7*0.9=0.63), (“data”, 0.7*0.8=0.56), (“algorithms”, 0.7*0.7=0.49)]
[(“tags”, 0.8*0.9=0.72), (“documents”, 0.8*0.6=0.48), (“content”, 0.8*0.5=0.4)]
[(“collaborative”, 0.6*0.9=0.54), (“documents”, 0.6*0.6=0.36), (“system”, 0.6*0.5=0.3)]
[(“math”, 0.4*0.9=0.36), (“technique”, 0.4*0.8=0.32), (“system”, 0.4*0.7=0.28)]
[(“data”, 0.2*0.9=0.18), (“documents”, 0.2*0.8=0.16), (“pdf”, 0.2*0.4=0.08)]
[(“science”, 0.3*0.9=0.27), (“mining”, 0.3*0.9=0.27), (“text”, 0.3*0.7=0.21)]

(5) TitleToTagRecommender
result merge

[(“recommendation”, 0.854272), (“tags”, 0.72), (“metadata”, 0.48), (“documents”, 0.472), (“data”, 0.426), (“model”,
0.36), (“technique”, 0.32), (“content”, 0.28), (“mining”, 0.24), (“collaborative”, 0.24), (“instruction”, 0.21),
(“processing”, 0.21), (“system”, 0.18), (“database”, 0.1)]

(5) TagToTagRecommender
result merge

[(“documents”, 0.720448), (“tags”, 0.72), (“data”, 0.6392), (“recommendation”, 0.63), (“collaborative”, 0.54),
(“system”, 0.496), (“algorithms”, 0.49), (“content”, 0.4), (“math”, 0.36), (“technique”, 0.32), (“mining”, 0.27),
(“science”, 0.27), (“text”, 0.21), (“pdf”, 0.08)]

(6) TitleToTagRecommender
result rescoring

[(“recommendation”, 0.3000), (“tags”, 0.2528), (“metadata”, 0.1686), (“documents”, 0.1658), (“data”, 0.1496),
(“model”, 0.1264), (“technique”, 0.1124), (“content”, 0.0983), (“mining”, 0.0843), (“collaborative”, 0.0843),
(“instruction”, 0.0737), (“processing”, 0.0737), (“system”, 0.0632), (“database”, 0.0351)]

(6) TagToTagRecommender
result rescoring

[(“documents”, 0.7000), (“tags”, 0.6996), (“data”, 0.6211), (“recommendation”, 0.6121), (“collaborative”, 0.5247),
(“system”, 0.4819), (“algorithms”, 0.4761), (“content”, 0.3886), (“math”, 0.3498), (“technique”, 0.3109), (“mining”,
0.2623), (“science”, 0.2623), (“text”, 0.2040), (“pdf”, 0.0777)]

(7) Merged result

[(“tags”, 0.7755), (“documents”, 0.7497), (“recommendation”, 0.7285), (“data”, 0.6778), (“collaborative”, 0.5648),
(“system”, 0.5146), (“algorithms”, 0.4761), (“content”, 0.4487), (“technique”, 0.3884), (“math”, 0.3498), (“mining”,
0.3245), (“science”, 0.2623), (“text”, 0.2040), (“metadata”, 0.1686), (“model”, 0.1264), (“pdf”, 0.0777), (“processing”,
0.0737), (“instruction”, 0.0737), (“database”, 0.0351)]

Table 4.4: Data flow in Lipczak’s system

28



4.5. Evaluation

The performance of a tag recommendation algorithm can be measured by comparing the recom-
mended tags with tags added by users. The user supplied tags are seen as ‘true’ tags.

4.5.1. Cross-validation

Cross-validation (CV) is a method for checking the performance of predictive systems. Data is
first split into n folds. In Figure 4.6 we see an example of 5-fold cross validation. The data is
tested n times, where each testcase consists of one fold as testset while the other folds serve as
the training set. The data serving as testset and training set alternates in all tests and results are
averaged.

Data

1 2 3 4 5

Divide into 5 folds

Testcase 1

Testcase 2

Testcase 3

Testcase 4

Testcase 5

Test set Training set

Figure 4.6: 5-fold cross-validation setup

4.5.2. Performance metrics

In order to evaluate the accuracy of tag recommender systems, three performance metrics are
applied. We first identify four types of results:

From the confusion matrix in Figure 4.7 we can derive the following performance metrics:

1. Precision
Precision measures the ratio between the correctly recommended tags and the total recom-
mended tags. It returns a value between 0 and 1, where 0 means none of the recommended
tags match the user tags and 1 means that all recommended tags are also user tags, although
user tags might be missed.

precision = |TP |
|TP+FP | = |correct tags|

|recommended tags|

2. Recall
Recall measures the ratio between the correctly recommended tags and the number of user
tags. It also returns a value between 0 and 1, where 0 means none of the recommended
tags match the user tags and 1 means that all user tags were recommended. However,
recommended tags which are not user tags (FP) are not taken into account and thus a lot
of false tags could be included.

recall = |TP |
|TP+FN | = |correct tags|

|user tags|

3. F1
Using either Precision or Recall we cannot determine the optimal performance of an algo-
rithm since they both lack information. The F1 measure combines both:

29



R
ec

om
m

en
d

ed

R
e
c
o
m

m
e
n
d
e
d

t
a
g
s

(
p
o
s
it
iv

e
)

N
o
t

r
e
c
o
m

m
e
n
d
e
d

t
a
g
s

(
n
e
g
a
t
iv

e
)

User &
recommended tags

True positive (TP)

User & not
recommended tags

False negative (FN)

Not user &
recommended tags

False positive (FP)

Not user & not
recommended tags

True negative (TN)

User tags
(positive)

Not user tags
(negative)

User

Figure 4.7: Recommendation confusion matrix

F1 = 2× precision×recall
precision+recall

In Figure 4.83 we see Precision versus Recall, and the blue lines show the respective F1
scores. The top left, where precision = 1 and recall = 0, means only matching user tags were
recommended but doesn’t tell how many, i.e. a lot of user tags might not be recommended.
The bottom right, where precision = 0 and recall = 1, means all user tags were recommended,
but doesn’t tell how many non user tags were recommended, i.e. false tags might also be
recommended.

Figure 4.8: Distribution of F1 scores given Precision and Recall

By combining Precision and Recall into the F1 measure a ratio is obtained between the
recommended matching user tags (TP), recommended but not matching user tags (FP) and

3Source code used from https://github.com/marcelcaraciolo/pyrecommender

30

https://github.com/marcelcaraciolo/pyrecommender


not recommended user tags (FN). An F1 score of 1 (precision and recall both 1) means that
all recommended tags are also user tags (TP), and no other tags were recommended, i.e. the
recommended tags perfectly match the user tags.

31



Chapter 5: Proposed techniques

We discussed various preprocessing techniques, document sources for tags and tag recommendation
techniques. During this research we implemented and tested all techniques and developed ideas for
improvement of the discussed theories. We found that Lipczak’s algorithm worked best on content-
based tag recommendation. His recommendation engine combines very basic recommendation
models to produce a single, very precise recommendation. We believe this is since his model
is the only model that learns relationships between titlewords and tagwords. In fact, while we
managed to improve the F1 scores on all algorithms by applying preprocessing techniques, we
did not manage to do so on Lipczak’s model (F1 actually decreased very slightly) since he learns
this title-tag relationship. All preprocessing techniques filter out mostly garbage, but also filter
out some relevant words. When applying models based on words frequencies, preprocessing will
improve the F1 results since garbage is filtered out. When applying Lipczak’s model, the garbage-
words will never appear in the final recommendation since only words used as tags by users are
recommended (which aren’t considered as garbage). Preprocessing will filter out a couple of those
words, leading to a lower F1 score.

Based on Lipczak’s model, we developed two ideas:

1. Expansion of the TitleRecommender’s space by adding a title-to-title recommender.

2. Weighting of the recommendation based on tag popularity.

5.1. Expansion of title search space

A document’s title is used as input for the system. When the title is very short, e.g. 1 word, its
tag search space is quite small. To expand the search space for relevant tags, we suggest adding
a ‘title-to-title’ recommender. This works in similar fashion as the TitleToTag and TagToTag
recommenders. When training the model on a set of documents, words appearing together in
document titles are stored as shown in Figure 5.1. For each word in the document’s title in the
training set, we produce a set of related words. The related word scores are calculated as:

st1→t2 =
frequency(t1∩t2)

frequencyt1
(5.1)

Where the variable st1→t2 represents the relation score from term t1 to t2. When a document
is inserted, the title-to-title recommender will produce a set of related words for each word in
the title. The sets are combined using the sumProb merger. Next, the TitleRecommender and
TitleToTitle recommender’s merge coefficient is learned by testing the Recall@5 on a subset of
the training data. The scores are rescored by the leading precision rescorer and merged using
the sumProb merger. After this, the resulting set of tags will continue the flow as in the original
Lipczak model.

32



algorithms

fortag

recommendation

unstructured data

Figure 5.1: Co-occurring words in titles are connected by the title-to-title recommender. Here we
see connected words given the sentence ‘tag recommendation algorithms for unstructured data’.
All edges have a score in both directions. A short sentence, e.g. ‘tag recommendation’ can be

expanded by searching in the network of related title-to-title words.

The graph in Figure 5.2 illustrates the flow of data through the modified network. Each node
represents a word. Blue nodes are activated and red nodes indicate recommended words. The Ti-
tleToTitle recommender expands the number of nodes forwarded to the TitleToTag and TagToTag
recommenders.

Figure 5.2: Network of words in Lipczak’s system. Each node represents a word, blue nodes are
selected from the post’s title but not recommended and red nodes are recommended.

5.2. Weighted recommendation based on tag popularity

Lipczak’s system does not take tag popularity into account but we think it could benefit from
incorporating a weighted function based on tag popularity. The system produces various sets of

33



tags in several stages. We add a popularity weighted function after the TitleRecommender. We
first rescore the Title recommender’s recommendation by multiplying each score by the normalized
tag popularity:

s
′

t = st ∗
ft
fmax

(5.2)

Each score st is multiplied by the tag frequency of t divided by the maximum tag frequency in the
training data fmax. However, we figured that the new scores were too biased by the tag frequency
multiplier. A smoothing term α was added to reduce the effect of the multiplier:

s
′

t = st ∗
(

1 + (1− α) ∗ ft
fmax

)
(5.3)

However, this appeared to have the same effect as normalization discussed earlier in the TF.IDF
section (Subsection 4.2.2): tags were rescored but the ordering between them did not change by
varying the value of α. We finally implemented the rescoring function as:

s
′

t =

{
st ∗

(
1 + ft

fmax

)
if ft exists

st otherwise
(5.4)

Where the value of st is multiplied by a value between 1 (infrequent tag) and 2 (frequent tag).
The value of st remains the same if t is unknown in the set of trained tags.

34



Chapter 6: Implementation

In this chapter, we discuss how raw data was transformed in order to use it in the experiments
(Section 6.1) and discuss how all algorithms were implemented/applied in this research (Sec-
tion 6.2).

6.1. Data extraction

Each dataset is published in a different format. All datasets were first transformed into a generic
format in order to use them in the experiments. Two files were created from each dataset:

1. posts
Each line in this file corresponds to a post in a folksonomy. Data is stored in the format:
(post, user, resource, [tags]). Post is a unique identifier. Some datasets don’t supply
post ids so the id numbers were automatically generated. User corresponds to a unique user
id, resource to a unique resource id and tags is an array of tag-words used to annotate the
resource.

2. resources
Each line in this file contains: (resource, title). The resource is a unique id which
relates to the resource ids in posts, and the title is the title of the resource. The titles are
kept seperate from posts since resources can be used multiple times and storing the titles in
posts would result in duplicate data.

During the transformation to generic format, some documents were lost. For example, the De-
liciousT140 dataset contained mostly HTML files (99.4%), but also some files in other formats
such as PDF, plain text or XML. The extraction of titles from HTML files is simple since it
contains title elements (<title>Document name</title>). Extraction from other file formats is
less straight-forward so those files were dropped from the experiments. Also, some HTML files
appeared to be empty and thus no titles could be extracted. Some resources could not be matched
with a title so those resources were also removed. The number of remaining posts after extraction
for each dataset is given in Table 6.1.

Dataset Posts Extracted posts
DeliciousT140 144574 121886

Wiki10+ 20762 20762
MovieLens 10M 82103 81167

Table 6.1: Number of remaining posts after data extraction.

A summary of the extraction process per dataset:

1. DeliciousT140
Data consisted of an XML file (188MB) containing users/resources/tags and a folder con-
taining complete HTML documents (6.92GB). Python was used for extracting posts from

35



the XML file and extraction of titles from each individual HTML file for resources (using
beautifulsoup4 library).

2. Wiki10+
The dataset contained an XML file (38MB) containing users/resources/tags/titles. Complete
documents were also supplied (1.73GB). Python was used to parse the XML and store posts
and resources. Complete documents were not used since the XML file contained resource
titles.

3. MovieLens 10M
Data was supplied in multiple .dat files, each containing several attributes separated by two
colons ‘::’. Python was used for extracting posts and resources from the .dat files.

6.2. Code implementation

All coding was done using Python 2.7. Programming was done on two systems: (1) Windows
7 Professional SP1 using an Intel Core i7-2600 CPU @ 3.40GHz and 8GB of RAM and (2) OS
X 10.9.5 using an Intel Core i7-2677M CPU @ 1.8GHz and 4GB of RAM. All experiments were
run only on the Windows system since it was faster and to assure equal processing speeds on all
algorithms.

All algorithms were tested using a self-written framework in Python which selected data, created
folds from the data, trained and tested one or more algorithms on the data and averaged the
results (as described in Subsection 4.5.1). All algorithms consist of a training stage and a testing
stage. We give a summary of the implementation of each algorithm. Pseudocode is given in
Appendix A.

The NLTK library was applied for some preprocessing tasks. It was applied to strip HTML,
tokenize text, remove stopwords and tag POS categories. Other tasks such as word length filters
and non-alphanumeric filters were self implemented. The NLTK tokenizer and stopword remover
appeared to miss a lot of ‘garbage’, mostly punctuation and HTML markup. Therefore additional
stopwords were added1:

“?”, “!”, “;”, “$”, “%”, “&”, “-”, “+”, “=”, “|”, “̀’’, “ ”, “.”, “{”, “}”, “,”,

“/”, “[”, “]”, “#”, “@”, “:”, “́’’, “(”, “)”, “ˆ”, “∼”, “*”, “http”, “gt”, “lt”,
“′t”, “la”, “′s”, “′′”, “amp”, “n′t”, “′m”, “...”, “de”, “‘‘”

Algorithm Implementation method

Global popular tags Implemented in Python

User popular tags Implemented in Python

TF.IDF & variants Implemented in Python

LSI and LDA
Used gensim [22] implementation for training and

implemented tag recommendation function

Lipczak & variants Implemented in Python

Table 6.2: Implementation of algorithms

Each algorithm was implemented as a Python Class with (at least) two functions: train and test.
This ensured every algorithm could be addressed in the same generic way. The train function
takes a collection of posts and the test function takes a single post and parameter n tags, which
is the number of desired tags. During the training stage, the posts contain the tags assigned by a
users. During the testing stage, the tags have been removed and tags are recommended based on
the remaining post content.

1From: https://github.com/ewencp/twitter-sirikata-vis/blob/master/baseline.py

36

https://github.com/ewencp/twitter-sirikata-vis/blob/master/baseline.py


Global popular tags

During training, a dictionary of tags was created with their respective frequencies. The tags
in the dictionary were sorted by frequency (decreasingly). During testing, the top n tags were
returned.

User popular tags

During training, a list of users with their tags sorted by frequency was collected. During testing,
the user was selected and his top n most frequent tags were returned. In case the test-post was
made by an unknown user or the user’s set of tags was too small, tags were added from the global
popular tag recommender.

TF.IDF

A TF.IDF implementation is available in gensim, however this appeared to be not flexible enough
to support all variants and thus an own implementation was written in Python. In the training
stage, all IDF values were precomputed. First all document frequencies of tags were counted.
Next, for each tag in the dictionary its IDF score was calculated as IDFt = log10 D

dft
.

In the testing stage, for each post a term-frequency (TF) vector was created based on the words
in the title. Each term’s TF.IDF score was then calculated as TFt×IDFt. The resulting tags and
scores were sorted by TF.IDF score. If the resulting number of tags was lower than the requested
number of tags, the global popular tag recommender was used to add remaining tags.

LSI and LDA

We started implementing LDA in Python but quickly discovered that the gensim implementation
would be a better option to use since the algorithms were more complex to implement. The gensim
model allows to train a model on given documents, but does not have a recommendation option.
This was implemented ourself.

Lipczak

Lipczak’s system was described in two papers and source code was available to his website2. The
source code was undocumented and written in Java. Since we implemented everything in Python,
and in order to understand the functioning of the system, we implemented the system based on his
papers. Since we focus on content-based tag recommendation in this research we decided to only
implement the content-based part of his system. In Figure 6.1 we see two flowcharts: Figure 6.1a
shows the part of Lipczak’s system that we implemented (the content-based part). Figure 6.1b
shows the same system, but with additions as described in Chapter 5.

2https://web.cs.dal.ca/~lipczak/old/tr09/src.php

37

https://web.cs.dal.ca/~lipczak/old/tr09/src.php


Post

TitleRecommender

TitleToTag-
recommender

TagToTag-
recommender

Rescore Rescore

SumProb merge

Result

(a) Implemented part of Lipczak’s system.

Post

Title-
recommender

TitleToTitle-
recommender

Rescore Rescore

SumProb merge

Smoothed tag
popularity multiplier

TitleToTag-
recommender

TagToTag-
recommender

Rescore Rescore

SumProb merge

Result

(b) Yellow blocks indicate additions to the system.

Figure 6.1: Implemented recommendation system based on Lipczak’s papers.

38



Chapter 7: Experiments

In this chapter, results of experiments in different settings are listed. Experiments are conducted
to measure various algorithms on speed and accuracy and to discover which parameters produce
optimal results. First, data is preprocessed in order to use it in the experiments. Words are filtered
during the preprocessing stage and thus the results are influenced by it.

Extraction of data and transformation to a usable format is described in Section 6.1. Experi-
ments on different sources of words and preprocessing techniques are conducted in respectively
Section 7.1 and Section 7.2. Experiments on tag recommendation techniques are carried out in
Section 7.3.

Since the number of possible experimental settings is unlimited, a number of experiments were
defined to give a comprehensive, yet clear and concise understanding of the performance of al-
gorithms. Most research was done using the DeliciousT140 dataset and thus the results on Deli-
ciousT140 are described comprehensively. Results on other datasets are described in a summarized
manner, but complete results are given in the Appendices.

7.1. Tag sources

The DeliciousT140 dataset provides most documents in HTML format. This format allows to
select different elements from the document and test them individually to check their performance
or ‘tag-density’. From each HTML document, the <title>, <h1> to <h6>, <a> and remaining
content in the <body> elements were selected. Basic preprocessing steps were applied to the text
from all extracted elements:

1. Conversion to lowercase

2. HTML code stripped

3. Words tokenized

4. Removed words of length 1

5. Removed stopwords

Next, the remaining words were recommended as tags and the Precision, Recall and F1-scores
were calculated. This shows which elements are the most tag-dense and provide the best source
for possible tags. This process was performed for each document in the DeliciousT140 dataset
and results were averaged over all documents. Figure 7.1 shows four plots, respectively the Pre-
cision, Recall, F1 and average number of tokens per element in the document (with and without
duplicates).

39



Figure 7.1: Tag density of HTML elements from DeliciousT140 documents after basic
preprocessing.

7.2. Preprocessing

Given the results from the previous section, we tested the performance of various preprocessing
techniques on the titles of documents. Three necessary preprocessing steps were performed: (1)
HTML was stripped, (2) text was converted to lowercase and (3) titles were tokenized. After these
steps, each preprocessing step was individually executed and the F1 score was calculated given
the remaining tokens.

7.2.1. Word length thresholds

The word length filter is two-fold: it consists of a minimum and maximum word length threshold.
A minimum threshold range of [2, 5] combined with a maximum threshold range of [6, 20] was
tested. The F1 score for the remaining tags was calculated and results were averaged over all
documents. Table 7.1 shows the results for all combinations of the two ranges.

40



6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 0.1184 0.1399 0.1561 0.1689 0.1755 0.1800 0.1816 0.1824 0.1826 0.1826 0.1826 0.1825 0.1824 0.1824 0.1824
3 0.1204 0.1426 0.1591 0.1722 0.1789 0.1835 0.1851 0.1860 0.1862 0.1861 0.1861 0.1860 0.1859 0.1859 0.1859
4 0.1079 0.1321 0.1499 0.1639 0.1711 0.1761 0.1778 0.1787 0.1789 0.1789 0.1789 0.1788 0.1787 0.1787 0.1787
5 0.0801 0.1075 0.1274 0.1430 0.1510 0.1565 0.1584 0.1594 0.1597 0.1597 0.1597 0.1596 0.1595 0.1595 0.1595

Table 7.1: DeliciousT140 F1-scores after word length filtering.
Rows = minimum word length, columns = maximum word length.

The same experiments were run on other datasets. The complete results are given in Appendix B.
Table 7.2 below gives a summary of the optimal thresholds found for each dataset.

Dataset Optimal minimum length Optimal maximum length
DeliciousT140 3 14

Wiki10+ 2 20
MovieLens 10M 4 12

Table 7.2: Optimal word length thresholds for all datasets.

7.2.2. Part-of-speech filtering

POS tagging and filtering (Section 3.5) was tested by plotting the distribution of POS categories
for both title-words and tag-words (Figure 7.2). The bar-plots show the percentage of each POS
category1, averaged over all posts.

Figure 7.2: Distribution of DeliciousT140 POS categories.
Left: title-word POS distribution, right: tag-word POS distribution.

Given the top 20 POS categories of the tag-words, a combination of POS filters on the title-words
was tested by filtering only the top n POS categories. For example: Filter #1: only NN, Filter
#2: only NN & NNS, Filter #3: only NN, NNS & JJ, etc. The results for all datasets are given
in Table 7.3.

1The POS categories displayed in the plots are the POS categories as defined in the Penn Treebank Project:
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html

41

http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html


Dataset
Filter top
# of POS

DeliciousT140 Wiki10+ MovieLens 10M

1 0.1510 0.0919 0.0068
2 0.1747 0.1022 0.0072
3 0.1849 0.1133 0.0085
4 0.1861 0.1138 0.00896
5 0.1883 0.1156 0.00903
6 0.1892 0.1184 0.0066
7 0.1891 0.1193 0.0067
8 0.1906 0.1238 0.0067
9 0.1911 0.1239 0.0067
10 0.1873 0.1243 0.0067
11 0.1875 0.1264 0.0065
12 0.1869 0.1272 0.0064
13 0.1871 0.1267 0.0064
14 0.1770 0.1273 0.0064
15 0.1779 0.1276 0.0064
16 0.1778 0.1277 0.0064
17 0.1775 0.1279 0.0064
18 0.1775 0.1283 0.0064
19 0.1775 0.12850 0.0064
20 0.1775 0.12854 0.0064

Table 7.3: F1-scores after POS filtering. The top POS categories are determined from the user
supplied tags. Best result per dataset is highlighted orange (results for each dataset are

independent).

7.2.3. Other preprocessing

Other preprocessing techniques (those that don’t require any parameters) are tested in this sub-
section. The top results from the word length filter and POS filter are included in the results for
reference. For each preprocessing technique, the average number of remaining words, the aver-
age F1-score and average processing time are listed. The results on DeliciousT140 are given in
Table 7.4, the results on other datasets are given in Appendix C.

Technique Number of
tokens

Number of
unique tokens

F1 Processing time
(seconds)

Raw data 7.86 7.24 0.1689 n.a.
Remove non-alphabetic 6.31 6.01 0.1828 0.000016

Remove non-alphanumeric 6.43 6.13 0.1824 0.000016
Remove stopwords 5.34 5.08 0.1933 0.000253

Word length ≥3 filter 5.80 5.53 0.1857 0.000003
Word length ≤14 filter 7.77 7.15 0.1691 0.000003

Word length ≥3 and ≤14 filter 5.71 5.44 0.1862 0.000003
POS top 9 usertag categories filter 4.92 4.70 0.1911 0.005877

Stemming Porter 7.86 7.21 0.1056 0.000104

Table 7.4: DeliciousT140 preprocessing techniques results.

Dataset Remove non-alphabetic/
non-alphanumeric

Remove stopwords Word length filter POS filter Stemming

DeliciousT140 Remove non-alphabetic Apply ≥3 and ≤14 Top 9 usertag categories Don’t apply
Wiki10+ Remove non-alphanumeric Apply ≥2 Don’t apply Don’t apply

MovieLens 10M Remove non-alphabetic Apply ≥4 and ≤12 Top 5 usertag categories Don’t apply

Table 7.5: Summary of optimal preprocessing settings for each dataset.

42



7.3. Tag recommendation algorithms

Several algorithms are implemented and compared:

1. Global popular tags (Subsection 4.1.1)

2. User popular tags (Subsection 4.1.2)

3. TF.IDF & variants (Subsection 4.2.2)

4. LSI (Subsubsection 4.2.3)

5. LDA (Subsubsection 4.2.3)

6. Lipczak & variants (Subsection 4.4.3)

The performance of all algorithms is tested on various datasets (Section 2.2) and using various
parameters. All experiments are defined in the next subsection.

7.3.1. Experiment settings

A very large number of experiments can be performed: various algorithms, each with various
parameters, on various datasets with a varying number of documents and multiple sources of
data. Therefore the number of experiments was limited in order to provide the most important
information. All experiments produce a range of 1 - 20 tags and all results are based on three
evaluation measures: Precision, Recall and F1.

The following experiments have been carried out. All results displayed in this section are based
on DeliciousT140 due to readability. Results on other datasets are given in Appendix D.

# Setting Description
1 Popular global tags Subsection 4.1.1
2 Popular user tags Subsection 4.1.2
3 TF.IDF Subsection 4.2.2
4 TF.IWF Subsection 4.2.2
5 TF.IWF2 Subsection 4.2.2
6 WF.IDF Logarithmic TF.IDF (Subsection 4.2.2)
7 BTF.IDF Boolean TF.IDF (Subsection 4.2.2)

8-18 NTF.IDF(0, 0.1, 0.2, ..., 1) Augmented TF.IDF (Subsection 4.2.2)
19 LSI (5 topics) Subsection 4.2.3

20-29 LSI (10, 20, 30, ..., 100 topics) Subsection 4.2.3
30 LDA (5 topics) Subsection 4.2.3

31-40 LDA (10, 20, 30, ..., 100 topics) Subsection 4.2.3
41 LDA trained on Wikipedia (50 topics) LDA trained on English Wikipedia (Subsection 4.2.3)

42-46 LDA trained on Wikipedia (100, 200, ..., 500 topics) LDA trained on English Wikipedia (Subsection 4.2.3)
47 Content-based Lipczak Standard Lipczak content-based system (Subsection 4.4.3)
48 TitleToTitle Section 5.1
49 Tag popularity multiplier Section 5.2
50 TitleToTitle & Tag popularity multiplier TitleToTitle and tag popularity multiplier combined

Table 7.6: Experiment settings

Memory usage

Measuring the memory usage of objects types other than built-in types (e.g. int and float) appeared
to be not possible. We decided to apply the following approach to get an indication of the required
memory. Each recommender was serialized to a string after training of the recommender and
written to disk. The size of the file is used as an approximation of the memory usage of the
recommender. There is some overhead, e.g. each recommender contains a “name” field which is

43



also serialized. However, these attributes take very little memory and are thus negligible. The
objects were serialized using the Python pickle library2.

Processing time

The processing time was measured using the Python time library3. We measured the training
stage and testing stage separately. Due to deviations when measuring very small processing times,
we measured the execution time of the full training and testing stage and divided the result by
the number of processed posts.

7.3.2. Results

The results consist of three measurements: Precision, Recall and F1. The F1 measure is a combi-
nation of Precision and Recall and is the most used measure in the field of information retrieval.
The performance of algorithms is ultimately based on the F1 score, so only the F1 results are given
in this subsection. The full results including Precision and Recall scores are given in Appendix D.
The algorithms shown in the legends are ordered by the summed value of all F1 scores.

2https://docs.python.org/2/library/pickle.html
3https://docs.python.org/2/library/time.html

44

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/time.html


Figure 7.3: DeliciousT140 F1 results for all experiments

First, we show the complete F1 results for all experiments in Figure 7.3. We see three separate
sections in the F1 scores: at the top (near 0.32) we see four scores which are Lipczak & contri-
butions. The second section (around 0.21) consists of TF.IDF and variations and we group the
other results into a third section.

We first further investigate the TF.IDF results. We see variance between the TF.IDF results,
mostly in the range of 1-10 tags (Figure 7.4):

45



Figure 7.4: DeliciousT140 F1 results for TF.IDF & variants

The variation in results is quite small so we zoom even closer to the F1 scores for recommending
3 tags:

Figure 7.5: DeliciousT140 F1 results for TF.IDF & variants

The TF.IWF scores are on top. Second and third place is taken by NTF.IDF (α = 0) and regular
TF.IDF. The yellow plot of NTF.IDF overlaps the blue TF.IDF since the results score exactly
the same. For α = 0 we get: α + (1 − α)

tft,d
tfmax(d)

× IDFt =
tft,d

tfmax(d)
× IDFt. As discussed in

the TF.IDF chapter, normalisation does not affect the results in the tag recommendation task.
Therefore, we can remove the normalisation which results in tft,d×IDFt, which equals the regular
TF.IDF measure.

Next, we investigate the functioning of Lipczak’s system and the novel contributions. The system
consists of several stages: training, learning of optimal parameters and testing. We first examine
the size of the network of words.

During the experiments, we train on 80% of the data and test on the remaining 20% of the data. In
Lipczak’s system, we use 80% of the training data to fill the network with words and relations, and
the remaining 20% of the training data to learn the optimal merge coefficients. The DeliciousT140
dataset consists of 121886 posts. Each fold contains 97509 training posts of which 78008 are used
for filling the network and 19502 posts are used for learning of the merge coefficients. 24380
posts serve as testing data. The individual recommenders produced the following statistics after
training:

46



Title recommender Learned on 404863 titlewords of which 61602 unique, 5.19 average title-
words per post (4.95 unique)

TitleToTag recommender Learned on 61602 titlewords and 1549063 related tagwords = 25.15
related tagwords per titleword

TagToTag recommender Learned on 1081620 tagwords, of which 46708 unique and 4195484
relations = 89.82 related tagwords per tagword

TitleToTitle recommender Learned on 404863 titlewords of which 61602 unique and 1526972
relations = 24.79 related titlewords per titleword

Next, optimal merge coefficients are learned which took 306.20 seconds on average on the origi-
nal Lipczak system and 411.13 seconds on average with the addition of the TitleToTitle recom-
mender. Both recommenders were serialized. The original Lipczak system took 193.28MB on
average on disk and with the additional TitleToTitle recommender it took 251.75MB on average
on disk.

The merge coefficients on Lipczak’s system were learned by testing the Recall@5 (Recall given
top 5 tags) after rescoring two recommenders given merge coefficient values ranging between 0
and 1 with steps of 0.01. His original system learns optimal values between the TitleToTag
recommmender and the TagToTag recommender (Figure 7.6a). The addition of the TitleToTitle
recommender requires a merge with the Title recommender. We plotted the results of this merger
in Figure 7.6b.

(a) TitleToTag (0.42) vs TagToTag (1-0.42=0.58) (b) TitleToTitle (0.21) vs Title (1-0.21=0.79)

Figure 7.6: Optimal merge coefficients on DeliciousT140 based on Recall@5

The merge coefficient plots shown above are the result of a single fold. The optimal values for all
folds are shown below in Table 7.7.

47



Fold TitleToTag-TagToTag
1 0.50
2 0.59
3 0.42
4 0.45
5 0.50

(a) Lipczak’s content-based
merge coefficients

Fold Title-TitleToTitle TitleToTag-TagToTag
1 0.21 0.59
2 0.16 0.60
3 0.18 0.59
4 0.17 0.60
5 0.18 0.48

(b) Merge coefficients
with TitleToTitle

Fold
TitleToTag-TagToTag

(with α = 1.4)
1 0.50

2 0.58

3 0.44

4 0.54

5 0.51

(c) Merge coefficients with
popularity multiplication

Fold Title-TitleToTitle
TitleToTag-TagToTag

with popularity
multiplier

1 0.21 0.51

2 0.16 0.59

3 0.18 0.56

4 0.17 0.60

5 0.18 0.40

(d) Merge coefficients with TitleToTitle
and popularity multiplication

Table 7.7: Merge coefficients of different systems on DeliciousT140

Lastly, we zoom in on the results on Lipczak’s system for 7 to 17 tags in Figure 7.7. We see a
clear peak at 12 tags.

Figure 7.7: DeliciousT140 F1 results for Lipczak, TitleToTitle and popularity multiplier

To see if the number of trained posts influenced the performance of the system, we also trained
on a varying number of posts:

48



Figure 7.8: DeliciousT140 TitleToTitle with popularity multiplier tested on varying number of
posts

The F1 score increases with an increase in the number of posts. However, we see only a small
improvement after 100000 posts. Results on other datasets are given in Appendix D.

49



Chapter 8: Discussion

We started this research with the goal of improving content-based tag recommendation given a
collection of posts containing users, resources, tags and resource titles.

Tag sources

We start the experiments by testing various content sources for their tag-density. We tested on all
HTML documents in the DeliciousT140 dataset by calculating Precision, Recall and F1 scores after
extraction of content from various document elements and basic preprocessing. We see that the
body (text within <body><\body> tags and words from <h1> to <h6> and <a> removed) contains
the most words also seen in the set of user tags (highest Recall score). However, it is also the most
imprecise source of tag-words since it contains over 1000 words on average. Words in the title

prove to be the most accurate source of tags (highest F1 score). The average title contains about
five words, giving the highest ratio of words also found in the set of user tags. After the title,
words in respectively h1, a, h2 and h3 elements gave the highest F1 score. In 6th place came
content, finally followed by h4, h5 and h6 elements.

Preprocessing

Next, we compare the performance of various preprocessing methods. We applied all preprocessing
techniques on the titles in the DeliciousT140 dataset, since this proved to be the most precise
source of tags. The remaining tokens after preprocessing were checked against user tags. The
POS tagging took longest to perform, although the processing time is negligible (0.006 seconds).
However, we found that the POS tagger did significantly influence the processing time during
training of the system. We often trained on 100,000+ documents and found that the POS tagger
substantially delayed the system when preprocessing so many documents. During the testing
stage, POS tagging was applied on single documents and did not noticeably delay the system.
Accuracy-wise, we found that all techniques except stemming had a positive influence on the
results. A number of ‘garbage’ tokens was removed and the resulting F1 scores increased after
preprocessing. Stemming also altered many relevant words and thus worsened the results.

Tag recommendation techniques

After preprocessing, we applied a number of recommendation algorithms to three real world
datasets. DeliciousT140 and Wiki10+ are post-core level 1 datasets. All resources were tagged by
a single user and thus a ‘resource profile’ containing previously added tags to a resource was of
no use. Recommending global popular tags and user popular tags was possible since there were
enough posts to train on. When a user profile was not available for a given post, we applied the
global popular tag recommender as a backup. The popularity based recommenders scored similar,
i.e. the difference in results was small.

50



TF.IDF & variants

Next, we applied TF.IDF and several variations. We implemented it ourself since the gensim
implementation did not offer enough flexibility to apply the variants. We implemented it so that
TF.IDF would recommend tags given a resource’s title, and extend the set of recommended tags
using the set of global popular tags in case not enough tags could be recommended. This was
often the case since we tested up to 20 tags and the average title in DeliciousT140 was 7.24 words
long. The result of this is noticeable: TF.IDF calculates the significance of each word in a set
of words, but does not extend this set of words. So when given the titles, which are about 7.24
words long, TF.IDF will only return that number of tags. The extended tags added from the
set of global popular tags will always be the same, regardless of the TF.IDF variant. The effect
is shown in Figure 8.1, where we see the results converging. The differences in TF.IDF variants
is clearer in Figure 8.2 in which we zoomed to the F1 scores given 3 tags. We see interesting
results in the low range of tags: the TF.IWF variant outperforms TF.IDF. Other variants such as
WF.IDF, normalized/augmented TF.IDF (NTF.IDF) and boolean TF.IDF (BTF.IDF) perform
worse.

Figure 8.1: DeliciousT140 TF.IDF F1 results zoomed to 1-10 tags. Algorithms in the legend are
sorted by summed F1 scores. We see the results converse, which is because of the length of the

titles (7.24 words on average)

Figure 8.2: DeliciousT140 TF.IDF F1 results zoomed to 3 tags.

Topic modelling techniques

Next, we focussed on topic modelling techniques. We applied the gensim implementation of the
LSI and LDA algorithms. The idea is that co-occurring words are clustered into topics. Given a
new document, the most related topics are determined and tags can be recommended from those
topics. The learning of topic clusters was handled by the gensim library, the tag recommendation
was self implemented. We learned the topics from the user tags and tested on resource titles.

51



However, the clustering seemed inaccurate for the tag recommendation task. The algorithms
returned the lowest scores over all experiments over all datasets. We varied the number of topics
but did not manage to achieve significantly better results.

The low scores can be explained by the fact that topic models are very similar to popularity based
methods in the tag recommendation task (given our implementation). We determine the topic
with the highest probability given a post, and select the top n words from that topic as tags. This
returns the most frequent words per topic, but those words are often very generic and not able to
represent individual documents.

We also trained an LDA model on the English Wikipedia with varying number of topics, but these
resulted in the lowest results over all datasets. This is presumably because each dataset is retrieved
from a certain domain, containing certain domain-specific or domain-popular words. Also, the
tagging process using LSI and LDA models was a time-consuming process (>0.1 second per post
= over 3 hours to tag the entire DeliciousT140 dataset). The experiments had to be run overnight,
although this could be solved since the last gensim update offers a multicore implementation:
http://radimrehurek.com/gensim/models/ldamulticore.html.

Lipczak’s system

The fact that TF.IDF (or TF.IWF) remained the best-scoring algorithm felt counter-intuitive. We
discovered the ECML 2009 challenge in which a winning system was created by Lipczak et al. His
system consists of several basic recommenders which are rescored and merged. We implemented
the content-based part of his system using Python based on two of his papers. The system learns
relations between title-words, tag-words and co-occurring tag-words. The system outperformed
TF.IDF significantly.

The testing of merge coefficients was the most time-consuming process. An optimal merge co-
efficient between the TitleToTag and TagToTag recommender was empirically found by testing
101 values between 0 and 1. When training on a large dataset, the number of related words per
word can grow quickly. For example, on DeliciousT140 we learned 46708 unique tagwords with
90 related tagwords on average. Thus, every combination of two recommenders involved merg-
ing hundreds of values, sorting these, and selecting only a top number of tags (≤20). This is
unnecessary and a limit to the number of processed words could be set.

Novel contributions

We proposed two additions to Lipczak’s system. First a TitleToTitle recommender which creates
a network of related title-words. This is helpful when given a post with a short title since the
post’s title can be extended using the TitleToTitle graph. The TitleToTitle recommender was
placed parallel with the Title recommender and the scores of the two were merged by testing
101 merge coefficient values between 0 and 1. On the DeliciousT140 dataset, we found optimal
merge coefficients around 0.20, where the TitleToTitle recommender is given a weight of 0.20
and the Title recommender a weight of 1-0.20=0.80. This indicates that the Title recommender
remains the primary source of tags, but the TitleToTitle recommender is a good addition. This
is confirmed given the results: the F1 scores improved on all three datasets with the addition of
the TitleToTitle recommender:

Dataset Lipczak TitleToTitle
DeliciousT140 0.3127 (12 tags) 0.3167 (12 tags)

Wiki10+ 0.2189 (13 tags) 0.2193 (13 tags)
MovieLens 10M 0.0370 (6 tags) 0.0909 (3 tags)

Table 8.1: Best F1 scores original Lipczak versus Lipczak with TitleToTitle

52

http://radimrehurek.com/gensim/models/ldamulticore.html


Second, we propose a popularity-based rescoring function. Suggested tags are rescored based on
their popularity in the dataset. The results are varying. We measured an improvement on the
DeliciousT140 dataset, no change on the Wiki10+ dataset and a slight decrease on the MovieLens
10M dataset.

The DeliciousT140 and Wiki10+ datasets are typical social tagging datasets: they consist of
documents which were annotated with tags by users. The MovieLens 10M dataset differs since it
is focussed on movie ratings and non-descriptive tags seem to be added. I.e., the tags were not
added with the goal of findability. Also, the tags are not supplied as an array of tag-words, but
as one sentence, e.g.: “Hunting Party, The (2007)”. The tag-sentences were split at whitespaces.
Most tags only contained a movie year and name. All these facts clearly translated into poor
results: the best algorithm was the popular user tag recommender scoring 0.1736 at 2 tags. Second
came Lipczak’s system with the additional TitleToTitle recommender. On Wiki10+, the range of
results was wider. LSI and LDA models performed poor, next came popularity based methods,
followed by TF.IDF and variants. Lipczak’s system outperformed TF.IDF and our TitleToTitle
extension combined with the popularity rescorer gave the best F1 score of 0.2193 at 13 tags.
On DeliciousT140, LSI and LDA also performed poorest, followed by popularity based methods
and again TF.IDF and variants. Lipczak’s system outperforms TF.IDF and our additions again
outperform the original Lipczak system. The best F1 score was 0.3216 for 12 tags. An optimal
number of tags differs per dataset. MovieLens 10M contained 1.16 tags per post, DeliciousT140
13.92 tags and Wiki10+ 22.05 tags per post. We see this in our results: we see peaks in the results
at or near those numbers.

53



Chapter 9: Future work

We investigated various tag recommendation techniques on various datasets. During this research,
we found that Lipczak’s system performed the best. Our additional popularity rescorer showed
varying results and the TitleToTitle recommender outperformed the original system on all three
datasets. We are pleased with the results but see several possibilities for future work.

One issue we faced during the research was the performance. Lipczak’s model grows fast in
memory. Although the TitleToTitle recommender improves results, it also consumes additional
memory. A more efficient implementation of the system could greatly improve the usability of the
system, e.g. by setting a score threshold before processing a word.

In other research, Lipczak applied post date in order to build a user profile recommender. Not all
datasets provide a post date and thus we decided not to apply this method. However, additional
data can easily be fitted into the system. For example, we can incorporate movie ratings between
1 and 5 from MovieLens 10M in the recommendation task. Or, we could add weights to tags based
on the number of views of a resource in a system. This however depends on the dataset. Lipczak’s
method of learning optimal merge coefficients for Recall@5 proves to work accurate and is thus
very helpful in determining an optimal ratio between multiple recommenders.

For a generic improvement, we could imagine handling multiword concepts, personalisation and
selecting other sources than the title from the content. We did a thorough analysis of the tag-
density of various document sources in DeliciousT140 and found that h1 tags were the second best
source of tags. This could provide additional information in the tag recommendation task.

54



Chapter 10: Bibliography

[1] Brian T Bartell, Garrison W Cottrell, and Richard K Belew. Automatic combination of multiple
ranked retrieval systems. In Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 173–181. Springer-Verlag New York, Inc.,
1994.

[2] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[3] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling and user-
adapted interaction, 12(4):331–370, 2002.

[4] Keli Chen and Chengqing Zong. A new weighting algorithm for linear classifier. In Natural Language
Processing and Knowledge Engineering, 2003. Proceedings. 2003 International Conference on, pages
650–655. IEEE, 2003.

[5] Ernesto Diaz-Aviles, Mihai Georgescu, Avaré Stewart, and Wolfgang Nejdl. Lda for on-the-fly auto
tagging. In Proceedings of the fourth ACM conference on Recommender systems, pages 309–312.
ACM, 2010.

[6] George Forman. An extensive empirical study of feature selection metrics for text classification. The
Journal of machine learning research, 3:1289–1305, 2003.

[7] Edward A Fox and Joseph A Shaw. Combination of multiple searches. NIST Special Publications
SP, pages 243–243, 1994.

[8] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual inter-
national ACM SIGIR conference on Research and development in information retrieval, pages 50–57.
ACM, 1999.

[9] Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining predictions for accurate recom-
mender systems. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 693–702. ACM, 2010.

[10] Robert Jäschke, Leandro Marinho, Andreas Hotho, Lars Schmidt-Thieme, and Gerd Stumme. Tag
recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD 2007, pages 506–
514. Springer, 2007.

[11] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet allocation for tag recommen-
dation. In Proceedings of the third ACM conference on Recommender systems, pages 61–68. ACM,
2009.

[12] Nikolas Landia, Stephan Doerfel, Robert Jäschke, Sarabjot Singh Anand, Andreas Hotho, and Nathan
Griffiths. Deeper into the folksonomy graph: Folkrank adaptations and extensions for improved tag
recommendations. arXiv preprint arXiv:1310.1498, 2013.

[13] Joon Ho Lee. Analyses of multiple evidence combination. In ACM SIGIR Forum, volume 31, pages
267–276. ACM, 1997.

[14] Marek Lipczak, Yeming Hu, Yael Kollet, and Evangelos Milios. Tag sources for recommendation in
collaborative tagging systems. ECML PKDD discovery challenge, 497:157–172, 2009.

[15] Marek Lipczak and Evangelos Milios. The impact of resource title on tags in collaborative tagging
systems. In Proceedings of the 21st ACM conference on Hypertext and hypermedia, pages 179–188.
ACM, 2010.

[16] Marek Lipczak and Evangelos Milios. Learning in efficient tag recommendation. In Proceedings of
the fourth ACM conference on Recommender systems, pages 167–174. ACM, 2010.

55



[17] Richard Maclin and David Opitz. Popular ensemble methods: An empirical study. arXiv preprint
arXiv:1106.0257, 2011.

[18] Leandro Balby Marinho and Lars Schmidt-Thieme. Collaborative tag recommendations. In Data
Analysis, Machine Learning and Applications, pages 533–540. Springer, 2008.

[19] Olfa Nasraoui. Web data mining: Exploring hyperlinks, contents, and usage data. ACM SIGKDD
Explorations Newsletter, 10(2):23–25, 2008.

[20] Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 159–168. ACM, 1998.

[21] Maria T Pazienza. Information Extraction. Springer, 1999.

[22] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50,
Valletta, Malta, May 2010. ELRA. http://is.muni.cz/publication/884893/en.

[23] Stephen Robertson. Understanding inverse document frequency: On theoretical arguments for idf.
Journal of Documentation, 60:2004, 2004.

[24] G. Salton. The SMART retrieval system: experiments in automatic document processing. Prentice-
Hall series in automatic computation. Prentice-Hall, 1971.

[25] Deepika Sharma. Stemming algorithms: A comparative study and their analysis. International
Journal of Applied Information Systems, 4(3):7–12, 2012.

[26] Xiance Si, Zhiyuan Liu, Peng Li, Qixia Jiang, and Maosong Sun. Content-based and graph-based
tag suggestion. Proceedings of the ECML PKDD Discovery Challenge, pages 243–260, 2009.

[27] Xiance Si and Maosong Sun. Tag-lda for scalable real-time tag recommendation. Journal of Compu-
tational Information Systems, 6(1):23–31, 2009.

[28] Marta Tatu, Munirathnam Srikanth, and Thomas DSilva. Rsdc08: Tag recommendations using
bookmark content. ECML PKDD discovery challenge, 2008:96–107, 2008.

[29] Karen HL Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-Thieme. Tag-aware recommender
systems by fusion of collaborative filtering algorithms. In Proceedings of the 2008 ACM symposium
on Applied computing, pages 1995–1999. ACM, 2008.

[30] Lei Wu, Linjun Yang, Nenghai Yu, and Xian-Sheng Hua. Learning to tag. In Proceedings of the 18th
international conference on World wide web, pages 361–370. ACM, 2009.

[31] Zhixiang Eddie Xu, Minmin Chen, Kilian Q Weinberger, and Fei Sha. From sbow to dcot marginal-
ized encoders for text representation. In Proceedings of the 21st ACM international conference on
Information and knowledge management, pages 1879–1884. ACM, 2012.

[32] Arkaitz Zubiaga. Enhancing navigation on wikipedia with social tags. arXiv preprint arXiv:1202.5469,
2012.

[33] Arkaitz Zubiaga, Alberto Pérez Garcia-Plaza, Vı́ctor Fresno, and Raquel Mart́ınez. Content-based
clustering for tag cloud visualization. In Social Network Analysis and Mining, 2009. ASONAM’09.
International Conference on Advances in, pages 316–319. IEEE, 2009.

56

http://is.muni.cz/publication/884893/en


Appendix A: Algorithm pseudocode

The pseudocode is written in a slightly Pythonic way. A dict is a container consisting of
(key,value) pairs. dict[key] will return a key’s value from the dict. dict.get(key,0) will
also return a key’s value, but return 0 if the key doesn’t exist.

Algorithm 1 Global popular tag recommender

1: function train(posts)
2: global tags = dict()
3: for each p in posts do
4: for each word in p.tags do
5: global tags[word] = global tags.get(word,0) + 1 . Add +1 for each tag occurence

6: end for
7: end for
8: global tags = sorted(global tags)
9: end function

10:

11: function test(post, n tags)
12: return global tags[:n tags] . Return top n tags global tags

13: end function

Algorithm 2 User popular tag recommender

1: function train(posts)
2: user tags = dict()
3: global tags = dict()
4: for each p in posts do
5: user dict = user tags.get(p.user,dict()) . Get user specific tags

6: for each word in p.tags do
7: user dict[word] = user dict.get(word,0) + 1 . Count user tag

8: global tags[word] = global tags.get(word,0) + 1 . Count global tag

9: end for
10: user tags[p.user] = sorted(user dict)
11: end for
12: global tags = sorted(global tags)
13: end function
14:

15: function test(post, n tags)
16: result = user tags[p.user][:n tags]
17: if length(result) < n tags then
18: result += global tags[:n tags - length(result)] . Add global popular tags

19: end if
20: return result
21: end function

57



Algorithm 3 TF.IDF recommender

1: function train(posts)
2: for each p in posts do
3: for each word in set(p.tags) do
4: term doccount[word] = term doccount.get(word,0) + 1 . Count term-document

frequency

5: end for
6: end for
7: for each term, doccount in term doccount do

8: idf[term] = log10( length(posts)
doccount ) . Compute IDF for each term

9: end for
10: end function
11:

12: function test(post, n tags)
13: for each word in p.title do
14: tf[word] = tf.get(word,0) + 1 . Count terms in post (=TF)

15: end for
16: for each word, tf score in tf do
17: tfidf[word] = tf score * idf[word] . Calculate TF∗IDF for each term

18: end for
19: return tfidf[:n tags]
20: end function

Algorithm 4 LSI and LDA recommender

1: function train(posts, k)
2: if LSI then
3: model = gensim.LSI(posts, k) . Train LSI

4: else if LDA then
5: model = gensim.LDA(posts, k) . Train LDA

6: end if
7: end function
8:

9: function test(post, n tags, strategy)
10: topics = InferTopicDistribution(post.title)
11: if strategy == 1 then . Top 1 from all topics

12: return t[0] for t in topics[:n tags]
13: else if strategy == 2 then . Top n tags from top topic

14: return topics[0][:n tags]
15: end if
16: end function

58



Algorithm 5 Lipczak recommender

1: function train(posts)
2: trainPosts = posts[:len(posts)*0.8] . Use 80% of posts for training

3: learnPosts = posts[len(posts)*0.2:] . Use 20% of posts for learning merge coefficients

4: titleRecommender = TitleRecommender.train(trainPosts)
5: titleToTitleRecommender = titleToTitleRecommender.train(trainPosts)
6: titleToTagRecommender = titleToTagRecommender.train(trainPosts)
7: learnMergeCoefficients(learnPosts)
8: end function
9:

10: function test(post, n tags)
11: . Get recommendations

12: titleRec = TitleRecommender.test(post)
13: titleToTagRec = TitleToTagRecommender.test(titleRec)
14: tagToTagRec = TagToTagRecommender.test(titleRec)
15: . Rescore recommendations

16: titleToTagRec = rescore(titleToTagRec, titleToTag mergeCoefficient)
17: tagToTagRec = rescore(tagToTagRec, tagToTag mergeCoefficient)
18: . Merge recommendations

19: contentRec = SumProbMerge([titleToTagRec, tagToTagRec])
20: return contentRec[:n tags]
21: end function

Algorithm 6 Title recommender

1: function train(posts, low freq, low freq score, low score threshold)
2: titleWords = dict()
3: titleTagWords = dict()
4: for each p in posts do
5: for each word in p.title do
6: titleWords[word] = titleWords.get(word,0)+1 . Count titlewords

7: if word in p.tags then
8: titleTagWords[word] = titleTagWords.get(word,0)+1 . Count title&tag-words

9: end if
10: end for
11: end for
12: titleWordScores = dict()
13: for each titleword,titleword freq in titleWords do
14: if titleword freq < low freq then
15: . Set default score for low frequency words

16: titleWordScores[titleword] = low freq score
17: else
18: score = titleTagWords[titleword]/titleword freq
19: if score ≥ low score threshold then . Drop words with low score

20: titleWordScores[titleword] = score
21: end if
22: end if
23: end for
24: end function
25:

26: function test(post)
27: result = titleWordScore[w] for w in post.title
28: . result = [(word1,score1),(word2,score2)....]

29: return sorted(result)
30: end function

59



Algorithm 7 TitleToTag recommender

1: function train(posts)
2: titleWordCount = dict()
3: titleTagGraph = dict()
4: for each for p in posts do
5: for each titleword in p.title do
6: titleWordCount[titleword] = titleWordCount.get(titleword,0)+1
7: titleTagGraph[titleword] += p.tags . Add tags to related tags list

8: end for
9: end for

10: titleTagScores = dict()
11: for each titleword,titletags in titleTagGraph do
12: titletag scores = dict()
13: for each tag in titletags do
14: titletag scores[tag] = titletag scores.get(tag,0)+1 . Count tag frequency

15: end for
16: for each tag,tag freq in titletag scores do
17: . Calculate title to tag scores

18: titletag scores[tag] = tag freq / titleWordCount[titleword]
19: end for
20: end for
21: end function
22:

23: function test(wordscores)
24: . wordscores = [(word1,score1),(word2,score2)....] from TitleRecommender

25: for each word,score in wordscore do
26: relatedTags = titleTagScores[word]
27: result += relatedTags * score
28: end for
29: . result = [[(word1,score1),(word n,score n)][(word1,score1),(word n,score n)],....]

30: . (one array of related tagwords/scores for each word from TitleRecommender)

31: result = SumProbMerge(result)
32: return result
33: end function

Algorithm 8 SumProb merge

1: function SumProbMerge(recommendations)
2: . recommendations = [[(word1,score1),(word2,score2)][(word1,score1)(word2,score2)]....]

3: products = dict()
4: for each rec in recommendations do
5: for each word,score in rec do
6: products[word] = products.get(word,1) * (1-score)
7: end for
8: end for
9: for each word,score in products do

10: products[word] = 1-score
11: end for
12: . products = [(word1,score1),(word2,score2), ...,(word n,score n)]

13: return products
14: end function

60



Algorithm 9 TagToTag recommender

1: function train(posts)
2: tagFrequencies = dict()
3: tagGraph = dict()
4: for each p in posts do
5: for each tag in p.tags do
6: tagFrequencies[tag] = tagFrequencies.get(tag,0)+1 . Store tag frequency

7: tagGraph[tag] += p.tags . Store co-occuring tags

8: end for
9: end for

10: for each t1, t1related in tagGraph do . Calculate tag relation scores

11: t1related frequencies = count(t1related)
12: for each t2, t2frequency in t1related frequencies do
13: t1related scores[t2] = t2frequency / tagFrequencies[t1]
14: end for
15: tagGraph[t1] = t1related scores
16: end for
17: end function
18:

19: function test(wordscores)
20: . wordscores = [(word1,score1),(word2,score2)....] from TitleRecommender

21: for each word,score in wordscore do
22: relatedTags = tagGraph[word]
23: result += relatedTags * score
24: end for
25: . result = [[(word1,score1),(word n,score n)][(word1,score1),(word n,score n)],....]

26: . (one array of related tagwords/scores for each word from TitleRecommender)

27: result = SumProbMerge(result)
28: return result
29: end function

Algorithm 10 Learn merge coefficients

1: function LearnMergeCoefficients(posts)
2: mergeRange = [0, 0.01, 0.02, ..., 1] . Merge values to test

3: for each p in posts do
4: titleRec = TitleRecommender.test(p) . Get title recommendation

5: titleToTagRec = titleToTagRecommender.test(titleRec) . Title-to-tag recommendation

6: tagToTagRec = tagToTagRecommender.test(titleRec) . Tag-to-tag recommendation

7: for each m in mergeRange do
8: titleToTagRec = rescore(titleToTagRec, m) . Rescore

9: tagToTagRec = rescore(tagToTagRec, 1-m) . Rescore

10: result = SumProbMerge(titleToTagRec, tagToTagRec) . Merge

11: recall = Recall@5(result) . Check result

12: end for
13: end for
14: setMergeCoefficients(max(recall))
15: end function

Algorithm 11 Rescoring function

1: function Rescore(recommendation, mergeCoefficient)
2: . recommendation = [(word1,score1),(word2,score2), ...]

3: . mergeCoefficient = value between 0 and 1

4: scoreFactor = mergeCoefficient/recommendation[0] . Divide by first score

5: rescoredRecommendation = r*scoreFactor for r in recommendation
6: return rescoredRecommendation
7: end function

61



Algorithm 12 TitleToTitle recommender

1: function train(posts)
2: titleWordCount = dict() . For counting title-words

3: titleGraph = dict() . For storing related title-words

4: for each p in posts do
5: for each word in p.title do
6: titleWordCount[word] = titleWordCount.get(word,0)+1 . Count word

7: titleGraph[word] = count([word for word in p.title]) . Count related words

8: end for
9: end for

10: for each titleword, related words in titleGraph do . Calculate tag relation scores

11: for each related titleword,count in related words do
12: scores[titleword → related titleword] = count/titleWordCount[titleword]
13: end for
14: end for
15: end function
16:

17: function test(post)
18: for each word in post.title do
19: for each related word,related score in scores[word] do
20: result += (related word,related score) . Add related words & scores to result

21: end for
22: end for
23: . result = [[(w1,s1),(w2,s2)],[(w1,s1),(w2,s2)],...]

24: . (one array of related titlewords/scores for each word in title)

25: result = SumProbMerge(result)
26: return result
27: end function

Algorithm 13 Smoothed tag frequency multiplier

1: function rescoreByPopularity(recommendation,alpha)
2: . Assume variable ‘‘frequencies’’ contains tag frequencies

3: for each word,score in recommendation do
4: score = score*(1+(1-alpha))*(frequencies[word]/max(frequencies))
5: end for
6: return recommendation
7: end function

62



Appendix B: Word length filter results

The tables in this chapter show the F1 scores after recommending title-words which have been
filtered by word length as described in the experiments in Subsection 7.2.1. Each table contains
the results for one dataset.

All results are displayed using four decimals. In case multiple settings scored best due to the
rounding, the number of decimals was increased until a single best score was found.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 0.1184 0.1399 0.1561 0.1689 0.1755 0.1800 0.1816 0.1824 0.1826 0.1826 0.1826 0.1825 0.1824 0.1824 0.1824
3 0.1204 0.1426 0.1591 0.1722 0.1789 0.1835 0.1851 0.1860 0.1862 0.1861 0.1861 0.1860 0.1859 0.1859 0.1859
4 0.1079 0.1321 0.1499 0.1639 0.1711 0.1761 0.1778 0.1787 0.1789 0.1789 0.1789 0.1788 0.1787 0.1787 0.1787
5 0.0801 0.1075 0.1274 0.1430 0.1510 0.1565 0.1584 0.1594 0.1597 0.1597 0.1597 0.1596 0.1595 0.1595 0.1595

Table B.1: DeliciousT140 F1-scores after word length filtering.
Rows = minimum word length, columns = maximum word length.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 0.0636 0.0820 0.0981 0.1091 0.1169 0.1225 0.1253 0.1269 0.1279 0.1284 0.1286 0.1288 0.12885 0.12888 0.12890
3 0.0615 0.0801 0.0963 0.1074 0.1153 0.1209 0.1237 0.1254 0.1263 0.1268 0.1271 0.1272 0.1273 0.1273 0.1274
4 0.0547 0.0735 0.0898 0.1010 0.1090 0.1145 0.1174 0.1191 0.1200 0.1205 0.1208 0.1209 0.1210 0.1210 0.1211
5 0.0387 0.0577 0.0743 0.0857 0.0938 0.0994 0.1023 0.1040 0.1050 0.1055 0.1057 0.1059 0.1060 0.1060 0.1060

Table B.2: Wiki10+ F1-scores after word length filtering.
Rows = minimum word length, columns = maximum word length.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 0.0060 0.0066 0.0070 0.0074 0.0074 0.0074 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
3 0.0063 0.0069 0.0073 0.0077 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078
4 0.0064 0.0072 0.0076 0.0080 0.00808 0.00812 0.00815 0.00814 0.00814 0.00814 0.00814 0.00814 0.00814 0.00814 0.00814
5 0.0053 0.0065 0.0071 0.0076 0.0077 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078

Table B.3: MovieLens 10M F1-scores after word length filtering.
Rows = minimum word length, columns = maximum word length.

63



Appendix C: Preprocessing results

The performance of various preprocessing techniques is tested on all datasets. Only titles were
used in these tests. The titles were preprocessed and recommended as tags. The resulting F1
scores are given in the tables below.

All titles are initially stripped from HTML, tokenized and converted to lowercase. After that,
each preprocessing technique is applied and measured. Grey cells show the initial F1 score (only
initial preprocessing), green cells show an increase in F1 score and red cells denote a decrease in
F1 score.

Technique Number of
tokens

Number of
unique tokens

F1 Processing time
(seconds)

Raw data 7.86 7.24 0.1689 n.a.
Remove non-alphabetic 6.31 6.01 0.1828 0.000016

Remove non-alphanumeric 6.43 6.13 0.1824 0.000016
Remove stopwords 5.34 5.08 0.1933 0.000253

Word length ≥3 filter 5.80 5.53 0.1857 0.000003
Word length ≤14 filter 7.77 7.15 0.1691 0.000003

Word length ≥3 and ≤14 filter 5.71 5.44 0.1862 0.000003
POS top 9 usertag categories filter 4.92 4.70 0.1911 0.005877

Stemming Porter 7.86 7.21 0.1056 0.000104

Table C.1: DeliciousT140 preprocessing techniques results.

Technique Number of
tokens

Number of
unique tokens

F1 Processing time
(seconds)

Raw data 2.29 2.28 0.12834 n.a.
Remove non-alphabetic 2.17 2.16 0.1286 0.000007

Remove non-alphanumeric 2.18 2.18 0.1292 0.000006
Remove stopwords 2.00 2.00 0.12831 0.000216

Word length ≥2 filter 2.17 2.17 0.1289 0.000002
Word length ≤20 filter 2.29 2.28 0.12831 0.000002

Word length ≥2 and ≤20 filter 2.17 2.16 0.1289 0.000002
POS top 20 usertag categories filter 2.24 2.23 0.1285 0.001654

Stemming Porter 2.29 2.28 0.0770 0.000042

Table C.2: Wiki10+ preprocessing techniques results.

Technique Number of
tokens

Number of
unique tokens

F1 Processing time
(seconds)

Raw data 6.99 6.57 0.00517 n.a.
Remove non-alphabetic 3.28 3.15 0.0081 0.000015

Remove non-alphanumeric 4.33 4.20 0.0072 0.000015
Remove stopwords 3.45 3.39 0.0083 0.000426

Word length ≥4 filter 3.16 3.11 0.0080 0.000003
Word length ≤12 filter 6.98 6.55 0.00518 0.000003

Word length ≥4 and ≤12 filter 3.14 3.10 0.0080 0.000003
POS top 5 usertag categories filter 2.19 2.14 0.0090 0.005579

Stemming Porter 6.99 6.56 0.0035 0.000099

Table C.3: MovieLens 10M preprocessing techniques results.

64



Appendix D: Experiment results

The results are organized per dataset. Each section contains the results of one dataset and consists
of (1) processing time and memory usage results, (2) a plot of the Precision/Recall/F1 results and
(3) all F1 scores. Other statistics and plots are given at points of interesting behaviour.

65



D.1. DeliciousT140

DeliciousT140
Technique Training stage (seconds per post) Testing stage (seconds per post) Memory usage (MB)

Popular global tags 0.000003 0.00022 1.65
Popular user tags 0.00001 0.00027 14.25

TF.IDF 0.00001 0.00026 3.01
TF.IWF 0.00001 0.00026 3.00
TF.IWF2 0.00001 0.00026 3.00
WF.IDF 0.00001 0.00026 3.01
BTF.IDF 0.00001 0.00025 3.01

NTF.IDF (a = 0) 0.00001 0.00025 3.01
NTF.IDF (a = 0.1) 0.00001 0.00025 3.01
NTF.IDF (a = 0.2) 0.00001 0.00025 3.01
NTF.IDF (a = 0.3) 0.00001 0.00025 3.01
NTF.IDF (a = 0.4) 0.00001 0.00025 3.01
NTF.IDF (a = 0.5) 0.00001 0.00024 3.01
NTF.IDF (a = 0.6) 0.00001 0.00025 3.01
NTF.IDF (a = 0.7) 0.00001 0.00024 3.01
NTF.IDF (a = 0.8) 0.00001 0.00025 3.01
NTF.IDF (a = 0.9) 0.00001 0.00024 3.01
NTF.IDF (a = 1) 0.00001 0.00025 3.01

LSI (5 topics) 0.00026 0.00413 9.99
LSI (10 topics) 0.00026 0.00422 15.82
LSI (20 topics) 0.00028 0.00449 27.53
LSI (30 topics) 0.00024 0.00478 39.19
LSI (40 topics) 0.00024 0.00486 50.86
LSI (50 topics) 0.00026 0.00487 62.45
LSI (60 topics) 0.00030 0.00481 74.07
LSI (70 topics) 0.00029 0.00489 85.60
LSI (80 topics) 0.00032 0.00484 97.11
LSI (90 topics) 0.00034 0.00489 108.66
LSI (100 topics) 0.00035 0.00485 120.16
LDA (5 topics) 0.00135 0.00535 14.66
LDA (10 topics) 0.00119 0.00578 26.35
LDA (20 topics) 0.00113 0.00773 48.25
LDA (30 topics) 0.00112 0.00875 66.47
LDA (40 topics) 0.00116 0.00884 87.43
LDA (50 topics) 0.00118 0.01011 107.06
LDA (60 topics) 0.00119 0.01176 131.90
LDA (70 topics) 0.00123 0.01324 154.95
LDA (80 topics) 0.00125 0.01490 178.07
LDA (90 topics) 0.00127 0.01627 201.04
LDA (100 topics) 0.00128 0.01664 220.89

LDA (Wikipedia) (50 topics) n.a. 0.02094 204.76
LDA (Wikipedia) (100 topics) n.a. 0.03113 426.59
LDA (Wikipedia) (200 topics) n.a. 0.05737 842.72
LDA (Wikipedia) (300 topics) n.a. 0.08221 1258.31
LDA (Wikipedia) (400 topics) n.a. 0.11109 1837.82
LDA (Wikipedia) (500 topics) n.a. 0.13807 2330.83

Lipczak 0.00328 0.02710 193.28
TitleToTitle 0.00399 0.02729 251.75

Tag popularity multiplier 0.00312 0.02590 193.28
TitleToTitle & popularity multiplier 0.00398 0.02739 251.75

Table D.1: Processing time per post and memory usage results on DeliciousT140. Times are
measured over the entire training/testing stage and divided by the number of posts.

66



Figure D.1: Precision, Recall and F1 results on DeliciousT140 dataset.
Algorithms are sorted by summed F1 scores.

Figure D.2: Top F1 results between 10-15 tags on DeliciousT140 dataset.
Algorithms are sorted by summed F1 scores.

67



# of tags
Technique 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Popular global tags 0.0236 0.0389 0.0531 0.0659 0.0773 0.0871 0.0957 0.1011 0.1066 0.1103 0.1140 0.1169 0.1193 0.1210 0.1228 0.1240 0.1245 0.1248 0.1254 0.1258
Popular user tags 0.0234 0.0419 0.0564 0.0678 0.0772 0.0851 0.0918 0.0977 0.1025 0.1065 0.1094 0.1120 0.1141 0.1158 0.1171 0.1182 0.1191 0.1198 0.1203 0.1206

TF.IDF 0.0570 0.1046 0.1426 0.1706 0.1893 0.2014 0.2082 0.2116 0.2129 0.2130 0.2127 0.2121 0.2115 0.2110 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
TF.IWF 0.0595 0.1070 0.1442 0.1716 0.1898 0.2017 0.2084 0.2117 0.2129 0.2130 0.2127 0.2122 0.2115 0.2110 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
TF.IWF2 0.0551 0.1030 0.1415 0.1699 0.1889 0.2012 0.2081 0.2115 0.2128 0.2129 0.2127 0.2121 0.2115 0.2110 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
WF.IDF 0.0553 0.1030 0.1415 0.1698 0.1888 0.2011 0.2081 0.2115 0.2128 0.2129 0.2127 0.2121 0.2115 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
BTF.IDF 0.0509 0.0988 0.1381 0.1674 0.1873 0.2001 0.2074 0.2111 0.2125 0.2127 0.2126 0.2120 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2060 0.2038

NTF.IDF (a = 0) 0.0570 0.1046 0.1426 0.1706 0.1893 0.2014 0.2082 0.2116 0.2129 0.2130 0.2127 0.2121 0.2115 0.2110 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.1) 0.0562 0.1037 0.1419 0.1701 0.1890 0.2012 0.2081 0.2115 0.2128 0.2129 0.2127 0.2121 0.2115 0.2110 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.2) 0.0553 0.1030 0.1414 0.1697 0.1888 0.2011 0.2080 0.2115 0.2128 0.2129 0.2127 0.2121 0.2115 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.3) 0.0545 0.1023 0.1409 0.1693 0.1886 0.2009 0.2080 0.2114 0.2128 0.2129 0.2127 0.2121 0.2115 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.4) 0.0538 0.1016 0.1404 0.1690 0.1883 0.2008 0.2078 0.2114 0.2127 0.2129 0.2127 0.2121 0.2115 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.5) 0.0531 0.1010 0.1399 0.1687 0.1881 0.2006 0.2078 0.2113 0.2127 0.2128 0.2126 0.2121 0.2115 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.6) 0.0524 0.1004 0.1395 0.1684 0.1879 0.2005 0.2077 0.2113 0.2126 0.2128 0.2126 0.2121 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.7) 0.0520 0.0999 0.1391 0.1681 0.1877 0.2004 0.2076 0.2112 0.2126 0.2128 0.2126 0.2120 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.8) 0.0516 0.0994 0.1387 0.1678 0.1875 0.2003 0.2075 0.2112 0.2126 0.2128 0.2126 0.2120 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2061 0.2038
NTF.IDF (a = 0.9) 0.0512 0.0991 0.1384 0.1676 0.1874 0.2002 0.2074 0.2111 0.2126 0.2128 0.2126 0.2120 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2060 0.2038
NTF.IDF (a = 1) 0.0509 0.0988 0.1381 0.1674 0.1873 0.2001 0.2074 0.2111 0.2125 0.2127 0.2126 0.2120 0.2114 0.2109 0.2106 0.2103 0.2095 0.2081 0.2060 0.2038

LSI (5 topics) 0.0219 0.0397 0.0540 0.0684 0.0773 0.0875 0.0963 0.1016 0.1067 0.1101 0.1135 0.1167 0.1190 0.1203 0.1218 0.1221 0.1236 0.1234 0.1240 0.1244
LSI (10 topics) 0.0273 0.0439 0.0565 0.0680 0.0766 0.0849 0.0917 0.0970 0.1018 0.1056 0.1091 0.1117 0.1139 0.1157 0.1173 0.1178 0.1193 0.1202 0.1206 0.1213
LSI (20 topics) 0.0311 0.0495 0.0624 0.0721 0.0792 0.0869 0.0927 0.0975 0.1018 0.1042 0.1071 0.1089 0.1101 0.1125 0.1137 0.1148 0.1159 0.1166 0.1170 0.1170
LSI (30 topics) 0.0288 0.0474 0.0611 0.0716 0.0790 0.0861 0.0918 0.0974 0.1015 0.1042 0.1072 0.1094 0.1108 0.1123 0.1139 0.1149 0.1154 0.1157 0.1160 0.1167
LSI (40 topics) 0.0289 0.0491 0.0615 0.0706 0.0788 0.0854 0.0914 0.0960 0.0999 0.1021 0.1047 0.1065 0.1082 0.1101 0.1122 0.1134 0.1141 0.1150 0.1153 0.1159
LSI (50 topics) 0.0299 0.0519 0.0658 0.0749 0.0836 0.0904 0.0948 0.0993 0.1029 0.1049 0.1072 0.1085 0.1104 0.1120 0.1135 0.1145 0.1153 0.1163 0.1161 0.1160
LSI (60 topics) 0.0305 0.0530 0.0657 0.0752 0.0832 0.0897 0.0937 0.0976 0.1007 0.1025 0.1044 0.1062 0.1075 0.1093 0.1109 0.1120 0.1127 0.1130 0.1129 0.1132
LSI (70 topics) 0.0321 0.0536 0.0668 0.0762 0.0827 0.0897 0.0942 0.0978 0.1013 0.1029 0.1044 0.1061 0.1076 0.1087 0.1099 0.1110 0.1116 0.1117 0.1116 0.1115
LSI (70 topics) 0.0308 0.0528 0.0661 0.0746 0.0820 0.0884 0.0920 0.0958 0.0995 0.1011 0.1032 0.1049 0.1062 0.1079 0.1096 0.1105 0.1112 0.1114 0.1113 0.1116
LSI (80 topics) 0.0314 0.0519 0.0645 0.0744 0.0802 0.0865 0.0905 0.0940 0.0968 0.0991 0.1009 0.1023 0.1035 0.1047 0.1058 0.1068 0.1072 0.1074 0.1074 0.1076
LSI (90 topics) 0.0315 0.0517 0.0649 0.0748 0.0818 0.0878 0.0916 0.0951 0.0976 0.0988 0.0998 0.1016 0.1025 0.1036 0.1044 0.1053 0.1058 0.1061 0.1061 0.1060
LSI (100 topics) 0.0323 0.0538 0.0672 0.0760 0.0821 0.0868 0.0903 0.0939 0.0964 0.0978 0.0988 0.1002 0.1014 0.1026 0.1032 0.1039 0.1042 0.1043 0.1041 0.1039
LDA (5 topics) 0.0129 0.0196 0.0266 0.0371 0.0418 0.0467 0.0514 0.0528 0.0550 0.0585 0.0616 0.0634 0.0665 0.0683 0.0702 0.0712 0.0736 0.0757 0.0761 0.0797
LDA (10 topics) 0.0181 0.0346 0.0429 0.0481 0.0529 0.0587 0.0637 0.0680 0.0704 0.0766 0.0811 0.0863 0.0890 0.0899 0.0893 0.0900 0.0914 0.0943 0.0950 0.0957
LDA (20 topics) 0.0170 0.0253 0.0315 0.0371 0.0424 0.0477 0.0526 0.0578 0.0597 0.0607 0.0627 0.0641 0.0653 0.0654 0.0663 0.0665 0.0689 0.0701 0.0700 0.0702
LDA (30 topics) 0.0255 0.0409 0.0527 0.0617 0.0685 0.0748 0.0783 0.0830 0.0859 0.0890 0.0907 0.0926 0.0941 0.0947 0.0964 0.0966 0.0973 0.0981 0.0992 0.0991
LDA (40 topics) 0.0283 0.0455 0.0577 0.0660 0.0729 0.0791 0.0831 0.0860 0.0890 0.0921 0.0940 0.0957 0.0968 0.0983 0.0987 0.0992 0.0994 0.0995 0.0994 0.0990
LDA (50 topics) 0.0304 0.0486 0.0607 0.0695 0.0755 0.0804 0.0842 0.0870 0.0903 0.0929 0.0945 0.0952 0.0961 0.0965 0.0970 0.0976 0.0979 0.0983 0.0983 0.0983
LDA (60 topics) 0.0339 0.0530 0.0654 0.0753 0.0821 0.0866 0.0917 0.0950 0.0977 0.1001 0.1015 0.1028 0.1037 0.1041 0.1046 0.1049 0.1049 0.1049 0.1051 0.1052
LDA (70 topics) 0.0337 0.0525 0.0655 0.0762 0.0829 0.0871 0.0910 0.0942 0.0970 0.0990 0.1009 0.1023 0.1032 0.1045 0.1053 0.1052 0.1057 0.1064 0.1063 0.1063
LDA (80 topics) 0.0321 0.0517 0.0645 0.0735 0.0796 0.0847 0.0886 0.0919 0.0944 0.0966 0.0982 0.0995 0.1012 0.1021 0.1027 0.1028 0.1028 0.1031 0.1030 0.1028
LDA (90 topics) 0.0345 0.0542 0.0667 0.0749 0.0814 0.0866 0.0903 0.0934 0.0954 0.0971 0.0983 0.0995 0.1006 0.1012 0.1015 0.1018 0.1020 0.1025 0.1025 0.1025
LDA (100 topics) 0.0361 0.0564 0.0694 0.0795 0.0872 0.0922 0.0965 0.0997 0.1017 0.1038 0.1051 0.1066 0.1074 0.1088 0.1098 0.1104 0.1108 0.1110 0.1109 0.1107

LDA (Wiki) (50 topics) 0.0064 0.0167 0.0201 0.0200 0.0208 0.0214 0.0231 0.0259 0.0263 0.0310 0.0305 0.0319 0.0328 0.0319 0.0316 0.0319 0.0310 0.0310 0.0316 0.0313
LDA (Wiki) (100 topics) 0.0168 0.0214 0.0239 0.0259 0.0294 0.0339 0.0358 0.0358 0.0372 0.0371 0.0366 0.0373 0.0368 0.0378 0.0377 0.0381 0.0384 0.0380 0.0378 0.0376
LDA (Wiki) (200 topics) 0.0137 0.0200 0.0219 0.0251 0.0264 0.0282 0.0314 0.0316 0.0321 0.0326 0.0325 0.0333 0.0334 0.0336 0.0337 0.0347 0.0352 0.0350 0.0345 0.0343
LDA (Wiki) (300 topics) 0.0127 0.0199 0.0226 0.0265 0.0277 0.0315 0.0324 0.0322 0.0332 0.0340 0.0350 0.0368 0.0369 0.0372 0.0372 0.0378 0.0381 0.0380 0.0377 0.0376
LDA (Wiki) (400 topics) 0.0150 0.0198 0.0266 0.0308 0.0329 0.0338 0.0344 0.0350 0.0355 0.0357 0.0358 0.0365 0.0367 0.0368 0.0373 0.0373 0.0375 0.0379 0.0382 0.0380
LDA (Wiki) (500 topics) 0.0123 0.0211 0.0256 0.0290 0.0317 0.0339 0.0354 0.0365 0.0371 0.0383 0.0383 0.0392 0.0390 0.0393 0.0397 0.0401 0.0412 0.0410 0.0406 0.0404

Lipczak 0.1249 0.1924 0.2332 0.2604 0.2786 0.2912 0.2995 0.3052 0.3085 0.3107 0.3120 0.3127 0.3124 0.3121 0.3114 0.3102 0.3084 0.3064 0.3041 0.3017
TitleToTitle 0.1254 0.1931 0.2343 0.2621 0.2811 0.2940 0.3027 0.3085 0.3122 0.3146 0.3159 0.3167 0.3166 0.3162 0.3155 0.3142 0.3125 0.3104 0.3082 0.3058

Tag popularity multiplier 0.1241 0.1958 0.2389 0.2674 0.2868 0.3000 0.3088 0.3146 0.3180 0.3201 0.3211 0.3216 0.3214 0.3207 0.3196 0.3179 0.3159 0.3136 0.3111 0.3084
TitleToTitle & popularity multiplier 0.1251 0.1935 0.2349 0.2628 0.2820 0.2950 0.3038 0.3099 0.3135 0.3160 0.3174 0.3181 0.3180 0.3176 0.3169 0.3155 0.3138 0.3118 0.3094 0.3069

Table D.2: F1 results on DeliciousT140 dataset.
Green = best result per algorithm, orange = best overall result.

68



D.2. Wiki10+

Wiki10+
Technique Training stage (seconds per post) Testing stage (seconds per post) Memory usage (MB)

Popular global tags 0.00001 0.00023 2.84
Popular user tags 0.00003 0.00024 7.46

TF.IDF 0.00002 0.00024 5.03
TF.IWF 0.00002 0.00024 5.02
TF.IWF2 0.00002 0.00025 5.02
WF.IDF 0.00002 0.00024 5.03
BTF.IDF 0.00002 0.00024 5.03

NTF.IDF (a = 0) 0.00002 0.00025 5.03
NTF.IDF (a = 0.1) 0.00002 0.00025 5.03
NTF.IDF (a = 0.2) 0.00002 0.00026 5.03
NTF.IDF (a = 0.3) 0.00002 0.00025 5.03
NTF.IDF (a = 0.4) 0.00002 0.00025 5.03
NTF.IDF (a = 0.5) 0.00002 0.00026 5.03
NTF.IDF (a = 0.6) 0.00002 0.00025 5.03
NTF.IDF (a = 0.7) 0.00002 0.00026 5.03
NTF.IDF (a = 0.8) 0.00002 0.00026 5.03
NTF.IDF (a = 0.9) 0.00002 0.00026 5.03
NTF.IDF (a = 1) 0.00002 0.00025 5.03

LSI (5 topics) 0.00049 0.00593 16.14
LSI (10 topics) 0.00051 0.00629 25.10
LSI (20 topics) 0.00054 0.00624 42.94
LSI (30 topics) 0.00041 0.00678 60.55
LSI (40 topics) 0.00043 0.00676 78.23
LSI (50 topics) 0.00045 0.00651 95.85
LSI (60 topics) 0.00048 0.00648 113.50
LSI (70 topics) 0.00049 0.00648 130.90
LSI (80 topics) 0.00053 0.00674 148.31
LSI (90 topics) 0.00056 0.00662 165.74
LSI (100 topics) 0.00061 0.00670 183.10
LDA (5 topics) 0.00353 0.00820 24.13
LDA (10 topics) 0.00330 0.00948 42.96
LDA (20 topics) 0.00310 0.01166 74.07
LDA (30 topics) 0.00303 0.01312 108.09
LDA (40 topics) 0.00303 0.01293 143.11
LDA (50 topics) 0.00307 0.01574 183.17
LDA (60 topics) 0.00335 0.01822 211.83
LDA (70 topics) 0.00349 0.02093 241.88
LDA (80 topics) 0.00344 0.02374 281.38
LDA (90 topics) 0.00375 0.02730 316.67
LDA (100 topics) 0.00379 0.02496 357.30

LDA (Wikipedia) (50 topics) n.a. 0.02207 205.95
LDA (Wikipedia) (100 topics) n.a. 0.03040 427.78
LDA (Wikipedia) (200 topics) n.a. 0.05649 843.91
LDA (Wikipedia) (300 topics) n.a. 0.08350 1259.50
LDA (Wikipedia) (400 topics) n.a. 0.10329 1839.01
LDA (Wikipedia) (500 topics) n.a. 0.12746 2332.03

Lipczak 0.00153 0.00716 164.98
TitleToTitle 0.00158 0.00687 166.36

Tag popularity multiplier 0.00142 0.00691 164.98
TitleToTitle & popularity multiplier 0.00157 0.00703 166.37

Table D.3: Processing time per post and memory usage results on Wiki10+. Times are measured
over the entire training/testing stage and divided by the number of posts.

69



Figure D.3: Precision, Recall and F1 results on Wiki10+ dataset.
Algorithms are sorted by summed F1 scores.

We see two plots near the top: the light-blue line at the top between 1-8 tags (TF.IDF & variants)
and the dark-blue line >8 tags (Lipczak & contributions). In Figure D.4 we zoom in on the results
between 5-10 tags.

In Figure D.5 we zoom on the Lipczak results between 9-17 tags. We see two lines: the TitleToTitle
recommender (& popularity multiplier) and second the original system (& popularity multiplier).
The popularity multiplier appears to have no significant effect on the results, but the TitleToTitle
recommender shows an improvement on the original system.

70



Figure D.4: F1 results on Wiki10+ dataset between 5-10 recommended tags. We see Lipczak
and additions increasing in F1 score while TF.IDF and variants decrease after 7 tags.

Figure D.5: Maximum F1 results on Wiki10+ dataset between 9-17 tags.

Wiki10+ consists of 20762 posts. 80% = 16610 posts serve as training data and 20% = 4152 posts
serve as test data. Lipczak’s system trains on 80% of the training data = 13288 posts and learns
parameters on 20% of the training data = 3322 posts. The recommenders produced the following
statistics:

Title recommender Learned on 26346 titlewords of which 13003 unique, 1.983 average title-
words per post (1.981 unique)

TitleToTag recommender Learned on 13003 titlewords and 452987 related tagwords = 34.84
related tagwords per titleword

TagToTag recommender Learned on 293074 tagwords, of which 72761 unique and 4741887
relations = 65.17 related tagwords per tagword

TitleToTitle recommender Learned on 26346 titlewords of which 13003 unique and 32780
relations = 2.52 related titlewords per titleword

71



# of tags
Technique 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Popular global tags 0.0757 0.1076 0.1241 0.1328 0.1380 0.1415 0.1421 0.1430 0.1434 0.1440 0.1447 0.1453 0.1455 0.1451 0.1451 0.1450 0.1445 0.1440 0.1433 0.1429
Popular user tags 0.0754 0.1068 0.1235 0.1319 0.1370 0.1402 0.1416 0.1426 0.1433 0.1438 0.1438 0.1437 0.1434 0.1428 0.1422 0.1418 0.1417 0.1412 0.1407 0.1400

TF.IDF 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
TF.IWF 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
TF.IWF2 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
WF.IDF 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
BTF.IDF 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924

NTF.IDF (a = 0) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.1) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.2) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.3) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.4) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.5) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.6) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.7) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.8) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 0.9) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924
NTF.IDF (a = 1) 0.0721 0.1313 0.1720 0.1951 0.2058 0.2106 0.2129 0.2122 0.2099 0.2085 0.2080 0.2073 0.2059 0.2043 0.2014 0.1994 0.1981 0.1963 0.1942 0.1924

LSI (5 topics) 0.0469 0.0809 0.0942 0.0977 0.1042 0.1053 0.1080 0.1097 0.1128 0.1147 0.1163 0.1165 0.1159 0.1168 0.1183 0.1265 0.1260 0.1248 0.1267 0.1266
LSI (10 topics) 0.0303 0.0492 0.0619 0.0743 0.0779 0.0888 0.0903 0.0907 0.0899 0.0938 0.0937 0.0947 0.0956 0.0958 0.1025 0.1030 0.1037 0.1052 0.1067 0.1067
LSI (20 topics) 0.0269 0.0396 0.0500 0.0593 0.0647 0.0733 0.0757 0.0806 0.0822 0.0836 0.0849 0.0861 0.0874 0.0887 0.0926 0.0929 0.0938 0.0950 0.0970 0.0973
LSI (30 topics) 0.0229 0.0369 0.0474 0.0545 0.0591 0.0646 0.0682 0.0707 0.0717 0.0744 0.0755 0.0766 0.0777 0.0787 0.0794 0.0821 0.0832 0.0832 0.0842 0.0847
LSI (40 topics) 0.0233 0.0354 0.0440 0.0525 0.0565 0.0607 0.0636 0.0666 0.0697 0.0726 0.0737 0.0755 0.0767 0.0773 0.0786 0.0794 0.0800 0.0806 0.0815 0.0819
LSI (50 topics) 0.0246 0.0376 0.0471 0.0540 0.0578 0.0627 0.0655 0.0678 0.0696 0.0715 0.0726 0.0743 0.0751 0.0758 0.0773 0.0788 0.0796 0.0800 0.0807 0.0813
LSI (60 topics) 0.0245 0.0373 0.0457 0.0523 0.0558 0.0603 0.0628 0.0650 0.0677 0.0688 0.0696 0.0711 0.0717 0.0724 0.0731 0.0740 0.0741 0.0747 0.0758 0.0761
LSI (70 topics) 0.0250 0.0373 0.0459 0.0512 0.0540 0.0575 0.0599 0.0618 0.0629 0.0642 0.0656 0.0669 0.0674 0.0685 0.0693 0.0709 0.0712 0.0719 0.0724 0.0727
LSI (80 topics) 0.0268 0.0398 0.0476 0.0534 0.0579 0.0602 0.0625 0.0644 0.0659 0.0673 0.0685 0.0701 0.0708 0.0711 0.0717 0.0729 0.0733 0.0734 0.0744 0.0746
LSI (90 topics) 0.0242 0.0387 0.0464 0.0517 0.0549 0.0577 0.0598 0.0609 0.0619 0.0635 0.0649 0.0662 0.0666 0.0673 0.0681 0.0688 0.0692 0.0694 0.0700 0.0702
LSI (100 topics) 0.0230 0.0360 0.0438 0.0494 0.0526 0.0570 0.0586 0.0591 0.0600 0.0617 0.0630 0.0641 0.0650 0.0657 0.0663 0.0668 0.0673 0.0673 0.0674 0.0677
LDA (5 topics) 0.0757 0.1076 0.1241 0.1328 0.1380 0.1387 0.1379 0.1385 0.1395 0.1403 0.1402 0.1390 0.1391 0.1387 0.1395 0.1422 0.1403 0.1406 0.1400 0.1383
LDA (10 topics) 0.0757 0.1076 0.1241 0.1255 0.1311 0.1293 0.1291 0.1366 0.1354 0.1354 0.1342 0.1318 0.1309 0.1341 0.1314 0.1311 0.1289 0.1269 0.1250 0.1238
LDA (20 topics) 0.0757 0.1076 0.1240 0.1329 0.1335 0.1310 0.1319 0.1354 0.1351 0.1353 0.1364 0.1373 0.1415 0.1398 0.1390 0.1378 0.1362 0.1341 0.1339 0.1319
LDA (30 topics) 0.0757 0.1076 0.1236 0.1327 0.1383 0.1392 0.1390 0.1399 0.1384 0.1397 0.1388 0.1398 0.1392 0.1375 0.1364 0.1390 0.1377 0.1375 0.1358 0.1356
LDA (40 topics) 0.0757 0.1072 0.1170 0.1253 0.1352 0.1366 0.1407 0.1425 0.1427 0.1419 0.1428 0.1430 0.1430 0.1424 0.1411 0.1391 0.1385 0.1413 0.1396 0.1401
LDA (50 topics) 0.0757 0.1064 0.1225 0.1301 0.1377 0.1409 0.1430 0.1447 0.1456 0.1457 0.1451 0.1445 0.1445 0.1436 0.1434 0.1436 0.1433 0.1428 0.1414 0.1407
LDA (60 topics) 0.0757 0.1058 0.1223 0.1310 0.1362 0.1397 0.1417 0.1439 0.1451 0.1456 0.1468 0.1471 0.1471 0.1469 0.1461 0.1455 0.1444 0.1434 0.1423 0.1418
LDA (70 topics) 0.0757 0.1064 0.1231 0.1300 0.1337 0.1374 0.1389 0.1410 0.1426 0.1426 0.1430 0.1426 0.1428 0.1424 0.1421 0.1411 0.1402 0.1390 0.1380 0.1371
LDA (80 topics) 0.0757 0.1054 0.1202 0.1310 0.1360 0.1404 0.1431 0.1439 0.1443 0.1456 0.1459 0.1455 0.1453 0.1452 0.1444 0.1435 0.1424 0.1418 0.1412 0.1406
LDA (90 topics) 0.0757 0.1058 0.1212 0.1302 0.1347 0.1373 0.1395 0.1409 0.1424 0.1421 0.1430 0.1434 0.1433 0.1426 0.1420 0.1414 0.1407 0.1398 0.1388 0.1391
LDA (100 topics) 0.0757 0.1050 0.1209 0.1307 0.1354 0.1384 0.1407 0.1417 0.1421 0.1421 0.1430 0.1427 0.1424 0.1424 0.1425 0.1420 0.1412 0.1402 0.1394 0.1388

LDA (Wikipedia) (50 topics) 0.0056 0.0108 0.0169 0.0198 0.0220 0.0222 0.0232 0.0264 0.0271 0.0287 0.0293 0.0304 0.0311 0.0308 0.0317 0.0321 0.0316 0.0321 0.0322 0.0321
LDA (Wikipedia) (100 topics) 0.0209 0.0303 0.0355 0.0380 0.0403 0.0422 0.0433 0.0446 0.0457 0.0456 0.0457 0.0457 0.0461 0.0482 0.0479 0.0482 0.0485 0.0481 0.0485 0.0485
LDA (Wikipedia) (200 topics) 0.0200 0.0308 0.0375 0.0396 0.0421 0.0439 0.0461 0.0474 0.0483 0.0482 0.0485 0.0490 0.0491 0.0499 0.0498 0.0502 0.0506 0.0503 0.0504 0.0501
LDA (Wikipedia) (300 topics) 0.0212 0.0316 0.0371 0.0405 0.0428 0.0445 0.0463 0.0469 0.0479 0.0485 0.0490 0.0500 0.0503 0.0509 0.0506 0.0510 0.0514 0.0514 0.0516 0.0514
LDA (Wikipedia) (400 topics) 0.0208 0.0315 0.0373 0.0409 0.0441 0.0461 0.0472 0.0484 0.0490 0.0491 0.0495 0.0500 0.0504 0.0511 0.0511 0.0514 0.0521 0.0521 0.0526 0.0526
LDA (Wikipedia) (500 topics) 0.0213 0.0323 0.0399 0.0425 0.0446 0.0462 0.0480 0.0495 0.0505 0.0510 0.0515 0.0528 0.0529 0.0539 0.0537 0.0539 0.0545 0.0540 0.0541 0.0538

Lipczak 0.0734 0.1259 0.1571 0.1779 0.1919 0.2014 0.2078 0.2121 0.2152 0.2167 0.2179 0.2189 0.2189 0.2185 0.2180 0.2170 0.2161 0.2148 0.2136 0.2123
TitleToTitle 0.0721 0.1252 0.1568 0.1776 0.1918 0.2015 0.2082 0.2125 0.2155 0.2171 0.2183 0.2192 0.2193 0.2189 0.2183 0.2172 0.2164 0.2150 0.2137 0.2124

Popularity multiplier 0.0734 0.1259 0.1571 0.1779 0.1919 0.2014 0.2078 0.2121 0.2152 0.2167 0.2179 0.2189 0.2189 0.2185 0.2180 0.2169 0.2161 0.2148 0.2136 0.2123
TitleToTitle & popularity multiplier 0.0721 0.1252 0.1568 0.1776 0.1918 0.2015 0.2082 0.2125 0.2155 0.2171 0.2183 0.2192 0.2193 0.2189 0.2183 0.2172 0.2164 0.2150 0.2137 0.2124

Table D.4: F1 results on Wiki10+ dataset.
Green = best result per algorithm, orange = best overall result.

Fold TitleToTag-TagToTag
1 0.18
2 0.02
3 0.13
4 0.18
5 0.11

(a) Lipczak’s content-based
merge coefficients

Fold Title-TitleToTitle TitleToTag-TagToTag
1 1 0.19
2 1 0.01
3 1 0.13
4 1 0.05
5 0.74 0.12

(b) Merge coefficients
with TitleToTitle

Fold TitleToTag-TagToTag

1 0.18

2 0.02

3 0.13

4 0.18

5 0.11

(c) Merge coefficients with
popularity multiplication

Fold Title-TitleToTitle
TitleToTag-TagToTag

with popularity
multiplier

1 1 0.19

2 1 0.01

3 1 0.13

4 1 0.05

5 0.74 0.12

(d) Merge coefficients with TitleToTitle
and popularity multiplication

Table D.5: Merge coefficients of different systems on Wiki10+

72



D.3. MovieLens 10M

MovieLens 10M
Technique Training stage (seconds per post) Testing stage (seconds per post) Memory usage (MB)

Popular global tags 0.000001 0.00015 0.32
Popular user tags 0.000002 0.00024 1.39

TF.IDF 0.000002 0.00016 0.60
TF.IWF 0.000002 0.00016 0.61
TF.IWF2 0.000002 0.00017 0.61
WF.IDF 0.000002 0.00016 0.60
BTF.IDF 0.000002 0.00016 0.60

NTF.IDF (a = 0) 0.000002 0.00017 0.60
NTF.IDF (a = 0.1) 0.000002 0.00016 0.60
NTF.IDF (a = 0.2) 0.000002 0.00016 0.60
NTF.IDF (a = 0.3) 0.000002 0.00016 0.60
NTF.IDF (a = 0.4) 0.000002 0.00016 0.60
NTF.IDF (a = 0.5) 0.000002 0.00016 0.60
NTF.IDF (a = 0.6) 0.000002 0.00016 0.60
NTF.IDF (a = 0.7) 0.000002 0.00016 0.60
NTF.IDF (a = 0.8) 0.000002 0.00015 0.60
NTF.IDF (a = 0.9) 0.000002 0.00016 0.60
NTF.IDF (a = 1) 0.000002 0.00016 0.60

LSI (5 topics) 0.00008 0.00127 2.03
LSI (10 topics) 0.00008 0.00120 3.25
LSI (20 topics) 0.00009 0.00134 5.71
LSI (30 topics) 0.00007 0.00126 8.13
LSI (40 topics) 0.00008 0.00124 10.56
LSI (50 topics) 0.00009 0.00126 12.98
LSI (60 topics) 0.00008 0.00139 15.40
LSI (70 topics) 0.00009 0.00133 17.79
LSI (80 topics) 0.00009 0.00136 20.18
LSI (90 topics) 0.00010 0.00134 22.56
LSI (100 topics) 0.00011 0.00131 24.99
LDA (5 topics) 0.00046 0.00132 3.10
LDA (10 topics) 0.00039 0.00130 5.28
LDA (20 topics) 0.00038 0.00172 9.63
LDA (30 topics) 0.00038 0.00194 13.90
LDA (40 topics) 0.00037 0.00186 19.23
LDA (50 topics) 0.00038 0.00222 23.56
LDA (60 topics) 0.00039 0.00273 27.34
LDA (70 topics) 0.00040 0.00306 32.35
LDA (80 topics) 0.00041 0.00338 37.87
LDA (90 topics) 0.00043 0.00379 42.27
LDA (100 topics) 0.00043 0.00418 44.77

LDA (Wikipedia) (50 topics) n.a. 0.02145 203.36
LDA (Wikipedia) (100 topics) n.a. 0.03140 425.19
LDA (Wikipedia) (200 topics) n.a. 0.05861 841.32
LDA (Wikipedia) (300 topics) n.a. 0.08984 1256.91
LDA (Wikipedia) (400 topics) n.a. 0.11871 1836.42
LDA (Wikipedia) (500 topics) n.a. 0.14396 2329.43

Lipczak 0.00014 0.00018 6.58
TitleToTitle 0.00065 0.00046 8.90

Tag popularity multiplier 0.00014 0.00018 6.58
TitleToTitle & popularity multiplier 0.00065 0.00045 8.90

Table D.6: Processing time per post and memory usage results on MovieLens 10M. Times are
measured over the entire training/testing stage and divided by the number of posts.

73



Figure D.6: Precision, Recall and F1 results on MovieLens 10M dataset.
Algorithms are sorted by summed F1 scores.

The popular user tags clearly scored the best with a peak at 2 tags giving an F1 score of 0.1736.
The second best performing algorithm is Lipczak’s system with the TitleToTitle recommender
with a score of 0.0909 at 3 tags. Third is the original Lipczak system with a score of 0.0370 at 6
tags.

74



# of tags
Technique 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Popular global tags 0.0111 0.0170 0.0206 0.0228 0.0245 0.0258 0.0265 0.0265 0.0265 0.0263 0.0262 0.0258 0.0254 0.0251 0.0247 0.0243 0.0239 0.0235 0.0232 0.0227
Popular user tags 0.1468 0.1736 0.1688 0.1579 0.1473 0.1364 0.1269 0.1186 0.1114 0.1052 0.0999 0.0951 0.0906 0.0867 0.0829 0.0797 0.0767 0.0739 0.0714 0.0691

TF.IDF 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
TF.IWF 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
TF.IWF2 0.0040 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
WF.IDF 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
BTF.IDF 0.0037 0.0088 0.0139 0.0177 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233

NTF.IDF (a = 0) 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.1) 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.2) 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.3) 0.0041 0.0090 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.4) 0.0040 0.0089 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.5) 0.0038 0.0089 0.0140 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.6) 0.0037 0.0089 0.0139 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.7) 0.0037 0.0088 0.0139 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.8) 0.0037 0.0088 0.0139 0.0178 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 0.9) 0.0037 0.0088 0.0139 0.0177 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233
NTF.IDF (a = 1) 0.0037 0.0088 0.0139 0.0177 0.0205 0.0224 0.0237 0.0246 0.0252 0.0254 0.0253 0.0253 0.0252 0.0250 0.0248 0.0246 0.0243 0.0240 0.0237 0.0233

LSI (5 topics) 0.0094 0.0131 0.0124 0.0119 0.0119 0.0119 0.0115 0.0112 0.0114 0.0120 0.0128 0.0126 0.0126 0.0129 0.0127 0.0124 0.0124 0.0124 0.0123 0.0121
LSI (10 topics) 0.0078 0.0100 0.0100 0.0102 0.0111 0.0112 0.0117 0.0124 0.0125 0.0123 0.0127 0.0122 0.0119 0.0117 0.0116 0.0114 0.0113 0.0112 0.0109 0.0108
LSI (20 topics) 0.0069 0.0092 0.0098 0.0101 0.0104 0.0106 0.0112 0.0110 0.0114 0.0112 0.0113 0.0113 0.0113 0.0112 0.0111 0.0110 0.0109 0.0109 0.0108 0.0107
LSI (30 topics) 0.0054 0.0070 0.0077 0.0083 0.0087 0.0093 0.0098 0.0097 0.0101 0.0103 0.0102 0.0102 0.0102 0.0102 0.0102 0.0101 0.0101 0.0101 0.0100 0.0100
LSI (40 topics) 0.0051 0.0069 0.0074 0.0079 0.0085 0.0088 0.0093 0.0097 0.0101 0.0101 0.0102 0.0100 0.0100 0.0099 0.0100 0.0100 0.0099 0.0099 0.0099 0.0098
LSI (50 topics) 0.0049 0.0063 0.0070 0.0077 0.0080 0.0084 0.0085 0.0086 0.0086 0.0085 0.0086 0.0086 0.0086 0.0087 0.0087 0.0086 0.0086 0.0085 0.0085 0.0085
LSI (60 topics) 0.0046 0.0060 0.0065 0.0071 0.0073 0.0076 0.0077 0.0078 0.0080 0.0080 0.0080 0.0081 0.0080 0.0079 0.0079 0.0080 0.0080 0.0081 0.0081 0.0080
LSI (70 topics) 0.0046 0.0060 0.0065 0.0069 0.0071 0.0076 0.0076 0.0078 0.0079 0.0079 0.0079 0.0080 0.0080 0.0080 0.0080 0.0079 0.0079 0.0078 0.0078 0.0078
LSI (80 topics) 0.0049 0.0060 0.0063 0.0066 0.0067 0.0070 0.0071 0.0071 0.0072 0.0072 0.0072 0.0071 0.0072 0.0072 0.0072 0.0072 0.0072 0.0071 0.0072 0.0071
LSI (90 topics) 0.0042 0.0056 0.0059 0.0062 0.0065 0.0068 0.0068 0.0068 0.0069 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0069 0.0069 0.0069 0.0070
LSI (100 topics) 0.0046 0.0060 0.0062 0.0064 0.0064 0.0067 0.0067 0.0067 0.0068 0.0067 0.0068 0.0067 0.0067 0.0067 0.0067 0.0068 0.0068 0.0068 0.0068 0.0067
LDA (5 topics) 0.0081 0.0118 0.0139 0.0149 0.0149 0.0147 0.0147 0.0142 0.0139 0.0139 0.0134 0.0130 0.0129 0.0126 0.0123 0.0121 0.0119 0.0116 0.0114 0.0112
LDA (10 topics) 0.0072 0.0106 0.0115 0.0126 0.0121 0.0123 0.0118 0.0114 0.0110 0.0109 0.0105 0.0106 0.0101 0.0098 0.0094 0.0091 0.0089 0.0086 0.0084 0.0083
LDA (20 topics) 0.0076 0.0108 0.0103 0.0103 0.0098 0.0094 0.0090 0.0085 0.0082 0.0078 0.0074 0.0072 0.0069 0.0066 0.0064 0.0062 0.0060 0.0059 0.0058 0.0056
LDA (30 topics) 0.0048 0.0072 0.0079 0.0079 0.0077 0.0072 0.0069 0.0065 0.0063 0.0060 0.0058 0.0055 0.0054 0.0052 0.0050 0.0049 0.0050 0.0049 0.0048 0.0046
LDA (40 topics) 0.0042 0.0055 0.0059 0.0059 0.0058 0.0056 0.0054 0.0051 0.0050 0.0049 0.0047 0.0046 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036
LDA (50 topics) 0.0048 0.0060 0.0062 0.0060 0.0059 0.0058 0.0055 0.0054 0.0052 0.0051 0.0049 0.0047 0.0046 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037
LDA (60 topics) 0.0041 0.0055 0.0057 0.0056 0.0054 0.0052 0.0050 0.0050 0.0048 0.0046 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0036 0.0036 0.0035 0.0034
LDA (70 topics) 0.0038 0.0046 0.0049 0.0049 0.0047 0.0047 0.0045 0.0044 0.0042 0.0040 0.0039 0.0037 0.0036 0.0034 0.0033 0.0032 0.0032 0.0032 0.0031 0.0030
LDA (80 topics) 0.0043 0.0051 0.0050 0.0050 0.0047 0.0045 0.0043 0.0041 0.0041 0.0039 0.0038 0.0036 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0030 0.0029
LDA (90 topics) 0.0038 0.0044 0.0045 0.0044 0.0044 0.0043 0.0040 0.0039 0.0037 0.0036 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0027
LDA (100 topics) 0.0038 0.0051 0.0053 0.0052 0.0051 0.0050 0.0048 0.0046 0.0045 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034 0.0034 0.0033

LDA (Wiki) (50 topics) 0.0017 0.0026 0.0025 0.0024 0.0022 0.0021 0.0021 0.0023 0.0022 0.0021 0.0025 0.0024 0.0023 0.0023 0.0023 0.0022 0.0022 0.0023 0.0022 0.0021
LDA (Wiki) (100 topics) 0.0024 0.0029 0.0038 0.0037 0.0037 0.0039 0.0037 0.0039 0.0038 0.0036 0.0035 0.0034 0.0033 0.0033 0.0032 0.0031 0.0030 0.0031 0.0031 0.0030
LDA (Wiki) (200 topics) 0.0023 0.0035 0.0040 0.0042 0.0042 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0036 0.0035 0.0035 0.0034 0.0033 0.0032 0.0031 0.0031 0.0030
LDA (Wiki) (300 topics) 0.0023 0.0028 0.0032 0.0034 0.0040 0.0040 0.0039 0.0038 0.0036 0.0035 0.0034 0.0033 0.0032 0.0032 0.0031 0.0030 0.0029 0.0029 0.0028 0.0027
LDA (Wiki) (400 topics) 0.0026 0.0035 0.0036 0.0036 0.0037 0.0037 0.0037 0.0036 0.0035 0.0033 0.0033 0.0032 0.0031 0.0031 0.0031 0.0030 0.0029 0.0029 0.0028 0.0027
LDA (Wiki) (500 topics) 0.0024 0.0041 0.0044 0.0043 0.0042 0.0041 0.0040 0.0038 0.0038 0.0036 0.0036 0.0035 0.0034 0.0033 0.0033 0.0033 0.0032 0.0031 0.0031 0.0030

Lipczak 0.0228 0.0311 0.0344 0.0357 0.0367 0.0370 0.0367 0.0359 0.0351 0.0342 0.0333 0.0324 0.0316 0.0310 0.0303 0.0296 0.0290 0.0283 0.0277 0.0270
TitleToTitle 0.0703 0.0869 0.0909 0.0895 0.0868 0.0831 0.0793 0.0752 0.0714 0.0678 0.0645 0.0615 0.0589 0.0564 0.0542 0.0522 0.0503 0.0485 0.0470 0.0455

Tag popularity multiplier 0.0227 0.0313 0.0344 0.0357 0.0367 0.0369 0.0366 0.0358 0.0350 0.0341 0.0332 0.0323 0.0315 0.0309 0.0302 0.0295 0.0289 0.0282 0.0276 0.0270
TitleToTitle & popularity multiplier 0.0703 0.0869 0.0909 0.0895 0.0868 0.0831 0.0793 0.0752 0.0714 0.0678 0.0645 0.0615 0.0589 0.0564 0.0542 0.0522 0.0503 0.0485 0.0470 0.0455

Table D.7: F1 results on MovieLens 10M dataset.
Green = best result per algorithm, orange = best overall result.

MovieLens 10M consists of 81167 posts. 80% = 64934 posts serve as training data and 20% =
16233 posts serve as test data. Lipczak’s system trains on 80% of the training data = 51947 posts
and learns parameters on 20% of the training data = 12987 posts. The recommenders produced
the following statistics:

Title recommender Learned on 177460 titlewords of which 7415 unique, 3.4162 average title-
words per post (3.3593 unique)

TitleToTag recommender Learned on 7415 unique titlewords and 64707 related tagwords =
8.73 related tagwords per titleword

TagToTag recommender Learned on 100659 tagwords, of which 10130 unique and 120360 re-
lations = 11.88 related tagwords per tagword

TitleToTitle recommender Learned on 177460 titlewords of which 7415 unique and 63388
relations = 8.55 related titlewords per titleword

75



Fold TitleToTag-TagToTag
1 0.95
2 0.81
3 1
4 0.69
5 0.81

(a) Lipczak’s content-based
merge coefficients

Fold Title-TitleToTitle TitleToTag-TagToTag
1 0.99 0.99
2 0.99 0.97
3 0.99 1
4 0.99 0.99
5 1 0.81

(b) Merge coefficients
with TitleToTitle

Fold TitleToTag-TagToTag

1 0.95

2 0.81

3 1

4 0.69

5 0.81

(c) Merge coefficients with
popularity multiplication

Fold Title-TitleToTitle
TitleToTag-TagToTag

with popularity
multiplier

1 0.99 0.99

2 0.99 0.97

3 0.99 1

4 0.99 0.99

5 1 0.81

(d) Merge coefficients with TitleToTitle
and popularity multiplication

Table D.8: Merge coefficients of different systems on MovieLens 10M

76


	Introduction
	Tag recommendation
	Motivation
	Challenges
	Natural Language Processing
	Information Retrieval
	Semantics
	Social and enterprise tagging strategies

	Objectives
	Formal problem definition
	Research questions
	Thesis structure

	Building blocks
	Software solutions
	Open Data
	Data characteristics
	Post-core selection

	IR system architecture

	Text preprocessing
	Text clean-up
	Stop word removal
	Stemming
	Tokenization
	Part-of-speech tagging
	Document representation models
	Bag of words (BOW)
	TF.IDF
	Other representation models


	Tag recommendation techniques
	Popularity based methods
	Global popular tags
	User popular tags

	Content based methods
	Content sources
	TF.IDF
	Topic modelling

	Graph based methods
	Hybrid approaches
	Ensemble types
	Ensembles for tag recommendation
	Lipczak's tag recommendation system

	Evaluation
	Cross-validation
	Performance metrics


	Proposed techniques
	Expansion of title search space
	Weighted recommendation based on tag popularity

	Implementation
	Data extraction
	Code implementation

	Experiments
	Tag sources
	Preprocessing
	Word length thresholds
	Part-of-speech filtering
	Other preprocessing

	Tag recommendation algorithms
	Experiment settings
	Results


	Discussion
	Future work
	Bibliography
	Appendices
	Algorithm pseudocode
	Word length filter results
	Preprocessing results
	Experiment results
	DeliciousT140
	Wiki10+
	MovieLens 10M


