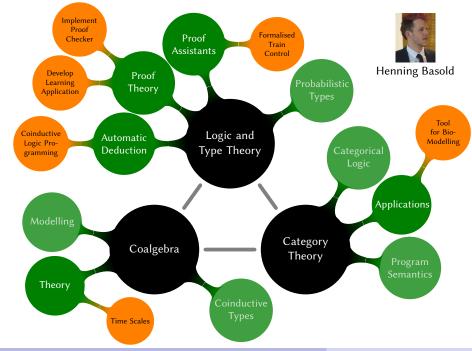
The Theory Cluster

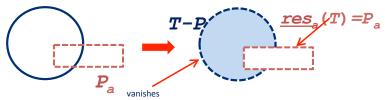


Topics in The Theory Cluster

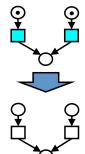
Algorithms **Automatic Verification** Artificial Intelligence **Business Processes and Networks Category Theory and Semantics** Concurrency Coalgebra and Behaviour **Combinatorics and Graph Theory Combinatorial Game Theory Natural Computing** Type Theory and Formalised Proofs **Quantum Learning and Optimisation**

Frank, Hendrik Jan, Walter, Rudy Alfons, Marcello, Frank Walter, Mathys, Vedran, Henning Pieter, Frank Henning, Mathys Jetty¹, Farhad, Frank Henning, Marcello Frank, Hendrik Jan, Walter Hendrik Jan, Walter Hendrik Jan, Jeanette Henning Charles, Mathys, Vedran

¹Back in June 2020



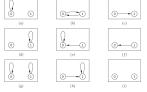
Jetty Kleijn (back in June)


'A Natural Computing Approach to the Functioning of Living Cells'

Computational understanding of the functioning of living cells Investigation of processes carried out by biochemical reactions

Abstract, formal framework: Model of Computation

- ✓ Networks of reactions systems
- ✓ Context
- ✓ Tool: visualisation and simulation


Set Nets

Jetty Kleijn (back in June)

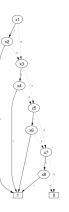
'(Petri) Nets that do not count'

set arithmetic rather than multisets belong to the family of 'Boolean Nets'

- ✓ Causality, dependency
- ✓ Structural properties
- ✓ Set nets and reaction systems
- ✓ Tool
- **✓**

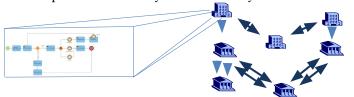
Program correctness and model checking with Alfons Laarman

BDDs, or Binary **Decision diagrams**, are complicated structures (used in model checking, theorem proving, AI Planning, ...)


X,	X_2	\mathbf{x}_3	x ₄	X ₅	X ₆	\mathbf{x}_7	x ₈	#
1	1	*	*	*	*	*	*	2 ⁶
*	*	1	1	*	*	*	*	26
*	*	*	*	1	1	*	*	26
*	*	*	*	*	*	1	1	2 ⁶

$$\begin{array}{l} f(x_1,..,x_8) & \& & g(x_1,..,x_8) \\ f(x_1,..,x_8) & | & g(x_1,..,x_8) \end{array}$$

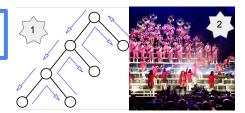
Use automated testing to find bugs in existing BDD packages (Sylvan, CUDD)

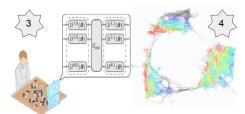

$$f(x_1, ..., x_8) = x_1x_2 + x_2x_4 + x_5x_6 + x_7x_8$$

Modelling, analysis and synthesis of business processes and systems

 <u>Problem</u>: how to specify/implement global requirements for business-to-business protocols and local requirements for internal operations and verify their consistency

Pieter Kwantes


- Overall goal is to design and build an integrated framework for domain-specific modelling, analysis and synthesis of inter-organizational business processes and systems to solve that problem
- Related courses: Programming, Theory of Concurrency, Programming and correctness


QUANTUM RL & OPTIMIZATION FOR NEAR-TERM QUANTUM COMPUTERS

- 1. Quantum k-SAT-solving algorithms
- 2. Quantum music
- 3. RL with parameterised quantum circuits
- 4. Quantum topological data analysis

Charles Moussa Mathys Rennela Casper Gyurik Vedran Dunjko

