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Programming Paradigms in AI

Two main traditional programming paradigms in AI:

● Logic programming

● Functional progamming
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Logic Programming
Developed in 1972-1973 to allow the 
implementation of intelligent systems that 
one could ask questions to

Every psychiatrist is a person.

Every person he analyzes is sick.

Jacques is a psychiatrist in Marseille.

Is Jacques a person?

Where is Jacques?

Is Jacques sick?
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Logic Programming

Most popular language is Prolog

Prolog is the basis for:

● Constraint logic programming 
systems (Eclipse)

● Probabilistic logic programming 
systems  (Problog, Markov logic, 
PRISM)

● Algebraic logic programming systems 
(Dyna, aProblog)
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Functional Programming
● Development started in 1958: LISP (LISt Processing)

● Program and data consists of lists that are manipulated using functions

● Expressions perform symbolic manipulation

● Most of early AI was symbolic

● LISP was used for instance in:
– The Dynamic Analysis and Replanning Tool used during the first Gulf War to plan military movements

– SPIKE, the planning and scheduling application for the Hubble Space Telescope

– American Express Authorizer's Assistant, checking credit card transactions in the early 1990s



Discover the world at Leiden University

Functional Programming
● Examples:

– LISP

– Scheme

– Haskell

– F#

– Clojure

● Is the basis for
– Probabilistic functional programming: Church (based on Scheme), PFP (Haskell), Infer.NET (F#), 

Anglican (Clojure)

– Functional reactive programming: Observable (F#), Reactive-banana (Haskell)
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Overview
● Propositional logic

● Predicate logic

● Prolog
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Propositional Logic
● Connectives, in order of increasing precedence:

–      : implication

–    : or, disjunction

–    : and, conjunction

–    : not, negation

● Examples of valid formulas:

● Implication is right associative:

(a, b,c, d are called atoms)
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Propositional Logic
● “Interpretation”, “truth assignment”, “valuation”, “possible world”: synonyms 

for an assignment of truth values to every atom in a formula

● All interpretations/truth assignments/valuations for             are

● A model for a formula is an interpretation that makes the formula true

a b

True True

True False

False True

False False
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Clauses

● Clauses are formulas consisting only of        and

they can also be written using ,      (after ) and      (before )→ → →

an atom or its negation is called a literal

Clause without 
positive literal

Clause without 
negative literal

Empty clause
is considered 
false

(brackets within a
clause are not allowed!)
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Conjunctive & Disjunctive
Normal Form

● A formula is in conjunctive normal form if it consists of a conjunction of 
clauses

– “conjunction of disjunctions”

● A formula is in disjunctive normal form if it consists of a disjunction of 
conjunctions
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Conjunctive & Disjunctive
Normal Form

● The transformation from CNF to DNF is exponential
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Conjunctive Normal Form

● Any formula can be written in CNF

(consequently, any formula can also be written in DNF, but the DNF formula 
may be exponentially larger)
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Checking Satisfiability of Formulas in CNF

Example: 
solving graph coloring with k colors by looking for models for a formula in CNF
• for each node i, create a formula

indicating that each node i must have a color
• for each node i and different pair of colors c1 and c2, create a formula

indicating a node may not have more than 1 color
• for each edge, create k formulas

indicating that a pair connected nodes i and j may not both 
have color c at the same time



Discover the world at Leiden University

Given two clauses                                   and                              ,
where                                                                  represent literals: 
if it holds that                             ,       then it holds that

The resolution rule for clauses:

Resolution Rule

Example:
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Definite clauses & Horn clauses

● A definite clause is a clause with exactly one positive literal

● A horn clause is a clause with at most one positive literal

A clause with one positive literal is called a fact
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Resolution on Definite Clauses

● Example:

●

● “backchaining algorithm”
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Forward chaining for Definite clauses

● The forward chaining algorithm calculates facts that can be entailed from 
a set of definite clauses

C = initial set of definite clauses
repeat

if there is a clause p1,...,pn  q→  in C where p1,...,pn are 
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution
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Predicate (First-Order) Logic
● Extends propositional logic with:

– Existental quantor

– Universal quantor

– Predicates

– Functions

– Variables

– Constants

● Example of a formula in first-order logic:

Variables Predicate Function Constant
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Predicate (First-Order) Logic
● Precedence: 

● Terms: variables, constants, functions applied to terms

● Atoms: predicates applied to terms

● Literals: atoms or negated atoms

Free variables
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Predicate (First-Order) Logic
● An interpretation       for a formula consists of:

– A universe of values

– For each constant in the formula, a corresponding value from the universe

– For each function symbol        of arity      , a function 

– For each predicate symbol         of arity      , a subset            of

● Example: an interpretation for                                                              is

  

 → Not a model for this formula
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Predicate (First-Order) Logic

● A model for a first-order formula is an interpretation that makes the formula true

● A first-order formula is satisfiable if it has a model

● It is undecidable in general whether a formula in first-order logic is satisfiable

●                  denotes that all models for        are also models for          
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Predicate (First-Order) Logic
● Rewriting first-order logic formulas

● Prenex normal form: all quantors first
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Skolemized Formulas
● Assume we are given a formula       in prenex normal form

● Then       is satisfiable if its skolemized version is satisfiable

● Essentially, in the skolemized version all existential quantifiers are removed and 
replaced by 
– new constants (if the existential quantifier is not in the range of a universal quantifier)

– calls to a new function, with all universally quantified variables as parameters (if the existential quantier 
is in the range of universal quantifiers)

● Example:
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Herbrand Interpretations
● The herbrand universe for a skolemized formula         is the universe of all terms 

that can be created using the constants and functions in the formula
– If the formula does not have constants, one constant a is added in the universe

● Example:

                                                                   Herbrand universe:

● The Herbrand base is the set of all atoms that can be created using terms in the 
Herbrand universe as arguments

Herbrand base for the example: 
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Herbrand Interpretation & Model
● A Herbrand interpretation for a formula       is an interpretation in which:

– The universe is the Herbrand universe

– The constants are assigned the trivial value in the universe

– Each function is mapped to the trivial composed value in the universe

– For each predicate the subset indicating for which arguments the predicate is true, is a subset of the 
Herbrand base

● Example:

– Universe: 

– Constant a takes value a in the universe, constant b value b

– The subsets for the predicates are:
● For p:
● For q:

This interpretation is also a
model for the formula; 
such a model is called a
Herbrand model
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Propositionalization
● If the Skolemized formula does not have functions, the Herbrand base is finite

● Finding a model = Finding a subset of the Herbrand base

● Such a model can be found by turning each element of the Herbrand base in a 
propositional atom and solving a propositional formula corresponding to the 
first-order logic formula. Idea: 
Replace                      with     where
are all values in the Herbrand universe

● Example:

First order logic formula
can be 
seen as template
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Clauses
● A clause is a formula that in prenex normal form can be written as

where        is a disjunction over literals

● Examples:

● Sometimes written as 
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Finding Models for CNF Formulas
● If a CNF formula does not have functions, it can be propositionalized

and finding a model for the first-order CNF formula = finding a model for the 
propositional CNF formula

● Example:

Formula:

Propositional form:

Model: make true: 

● Minimal model: a model that is not a “superset” of another model
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Exercise
● Given the following first-order formula:

– Determine its (skolemized) conjunctive normal form

– Determine its Herbrand base

– Propositionalize the formula

– Determine a model for the formula



Discover the world at Leiden University

Exercise
● Given the following first-order formula:

– Determine its (skolemized) conjunctive normal form

– Determine its Herbrand base

– Propositionalize the formula

– Determine a model for the formula

– Determine a minimal model for the formula
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Solving Graph Coloring using 
Answer Set Programming (Version 1)
node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3). 
edge(X,Y) :­ edge(Y,X).

1 { coloring(X,green); coloring(X,red); coloring(X,blue) } :­ node(X).

:­ coloring(X1,C), coloring(X2,C), edge(X1,X2).
:­ coloring(X,green), coloring(X,red).
:­ coloring(X,green), coloring(X, blue).
:­ coloring(X,red), coloring(X,blue).

Clasp

Notation for

gringo gc.lp | clasp --number 0
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Solving Graph Coloring using 
Answer Set Programming (Version 2)
node(1). node(2). node(3). edge(1,2). edge(2,3). Edge(1,3).
edge(X,Y) :­ edge(Y,X).
color(green). color(red). color(blue).

1 { coloring(X,C): color(C) } :­ node(X).

:­ coloring(X1,C), coloring(X2,C), edge(X1,X2).
:­ coloring(X,C1), coloring(X,C2), C1 != C2.

Clasp

Notation for



Discover the world at Leiden University

Solving Graph Coloring using 
Answer Set Programming (Version 3)
node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3).
edge(X,Y) :­ edge(Y,X).
color(green). color(red). color(blue).

1 { coloring(X,C): color(C) } 1 :­ node(X).

:­ coloring(X1,C), coloring(X2,C), edge(X1,X2).

Clasp

Notation for
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Solving Graph Coloring using 
Answer Set Programming – Exercises
node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3).
edge(X,Y) :­ edge(Y,X).
color(green). color(red). color(blue).

1 { coloring(X,C): color(C) } 1 :­ node(X).

:­ coloring(X1,C), coloring(X2,C), edge(X1,X2).

Clasp

● Extend the code such that node 1 is ensured to be green.

● Extend the code such that no two neighbors of any given node have the same 
color

0 { coloring(Y,C) : edge(X,Y) } 1 :­ node(X), color(C)
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Hamilton Cycles in ASP
● Hamilton cycle: visit all nodes exactly once in a cycle

node(a). node(b). node(c).
edge(a,b). edge(b,c). 
edge(X,Y) :­ edge(Y,X).

number(1). number(2). number(3).
next(1,2). next(2,3). next(3,1).

1 { step(I,X) : number(I) } 1 :­ node(X).
1 { step(I,X) : node(X) } 1 :­ number(I).

edge(X1,X2) :­ step(I1,X1), step(I2,X2), next(I1,I2).



Discover the world at Leiden University

Negation in ASP
● ASP supports negated atoms in the right-hand side of a formula

:­ step(I1,X1), step(I2,X2), next(I1,I2), not edge(X1,X2).

● ASP gives such rules a special interpretation; intuition: 
– If an atom occurs on the left-hand side of the :-, it is allowed to add this atom to the model to make the 

rule true

– If an atom occurs negated on the right-hand side of the :-, the atom may not be added by this rule; if the 
atom is not the consequence of some other rule, the rule is false
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Negation in ASP
● A model in ASP is a stable model iff the model is also minimal for the grounded 

(propositional) program in which:
– All rules for which a right-hand negative literal is false, are removed

– All right-hand negative literals that are true, are removed

● Example: program

:­ b, not c.
b.

has as model { b, c }.
This program is reduced to:

b.  (The rule is removed as it has a right-hand literal that is false)

For this program { b, c } is not a minimal model, hence this model is not stable
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Hamilton Cycles in ASP
● edge(a,c) is not part of a stable model for the program below:

node(a). node(b). node(c).
edge(a,b). edge(b,c). 
edge(X,Y) :­ edge(Y,X).

number(1). number(2). number(3).
next(1,2). next(2,3). next(3,1).

1 { step(I,X) : number(I) } 1 :­ node(X).
1 { step(I,X) : node(X) } 1 :­ number(I).

:­ step(I1,X1), step(I2,X2), next(I1,I2), not edge(X1,X2).
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Clark's Completion
● An answer set is a model for Clark's completion of a model

● Example:

Here, a can be part of the model

Clark's completion: 

Here, a can not be part of the model.

● In general, Clark's completion for a set of clauses                                              is the 
formula
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Limitation till Now
● Answer set programming does not support functions

● Up next: Prolog, which supports functions
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Horn, Definite and Goal Clauses

● A definite clause is (again) a clause with exactly one positive literal

● A Horn clause is (again) a clause with at most one positive literal

● A Goal clause is a clause with no positive literal
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Substitutions on Clauses
● Given a formula         a substitution       is a set that maps variables in      to terms

● A substitution can be applied to a formula, denoted       , and yields the formula     
in which the variables are replaced with the corresponding new terms

● Examples:
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Unification
● A unifier is a subtitution that makes two atoms identical

● The most general unifier is not unnecessarily large or complex

impossible
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Given two clauses                                   and                                            that
are standardized apart, i.e., they don't share variables,  
where                                                                  represent literals: 
if it holds that                             for an MGU       for literals              , then it holds that

The resolution rule for clauses:

Resolution in First-Order Logic

Example:
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SLD Resolution
● Selective Linear Definite clause resolution

● Resolution applied to a set with one goal clause and definite clauses otherwise, in 
which the goal clause is updated by means of resolution steps

● Resolution steps in this case form a linear chain

● Example:
– Goal clause:

– Definite clauses:  

Robert Kowalski
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SLD Resolution

Linear chain

This is called an SLD proof for p(a);
it shows that the definite clauses entail p(a)
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SLD Resolution
● Search can be required to find a proof, or to determine that no proof exists

Definite clauses:

Goal:
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Prolog
● Programming language based on SLD resolution

– :- replaces  ←

– , replaces 

p(X) :­ q(X,Y), t(Y)
q(a,b).
q(a,c).
t(c).

?­ p(a).
Yes

?­ p(a)

?­ q(a,Y),t(Y)

?­ t(b) ?­ t(c)

Yes
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Prolog
● Prolog applies resolution from top to bottom in the program

– This can be important to avoid infinite recursion

– Although it does not solve the recursion problem

p(X) :­ p(f(X))
p(f(a)).

?­ p(a)

?­ p(f(f(a))

?­ p(a)

?­ p(f(a))

?­ p(f(f(a)))

?­ p(f(f(f(a))))

...



Discover the world at Leiden University

Prolog
● Example: finding paths

path(X,Y) :­ edge(X,Y).
path(X,Y) :­ edge(X,Z),path(Z,Y).

edge(a,b).
edge(a,c).
edge(c,d).

?­ path(a,d).
?­ path(X,Y). Generates all pairs of nodes between which a path exists

This is called the extension of the path predicate,
i.e. all combinations of arguments for which the predicate is true.
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Prolog
● Support for functions: lists, mathematical operators
length([],0). 
length([H|T],N) :­length(T,M), N is M+1. 

member(X,[X|List]). 
member(X,[Element|List]) :­member(X,List). 

append([],List,List).
append([Element|L1],L2,[Element|L1L2]) :­append(L1,L2,L1L2).

?­ length([a,b],X).
?­ length([a,b],2).
?– member(b,[a,b,c]).
?– member(X,[a,b,c]).
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Prolog: Cuts
● Cuts are atoms that prevent backtracking in the search for proofs

 → if the search reaches the cut, it will never consider alternatives for the current 
clause, or the variable assignments used at the moment in the clause

 the order of the program determines the order→

● Cuts make Prolog less declarative...

q(a,b).
q(a,c).
t(c).
p(X) :­ q(X,Y), !, t(Y)
p(a).

?­ p(a).
No
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Prolog: Fail
● Fail is an atom that enforces that a proof fails

● Combined with cuts, it can be used to express exceptions

q(a,b).
q(a,c).
t(c).
p(X) :­ q(X,Y), fail.

?­ p(a).
No

like(X) :­ chocolate(X), !, fail. 
like(X) :­ sweet(X).
sweet(fanta). sweet(mars). chocolate(mars).

?­ like(mars).
No
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Prolog: Negation
● Negation by failure: Prolog assumes that anything it can't prove, is false

● not is an atom defined as follows:

● not can be used to check whether something can not be proved

not(goal) :­ call(goal), !, fail.
not(goal).

like(X) :­ sweet(X), not(chocolate(X)).
sweet(fanta). sweet(mars). chocolate(mars).

?­ like(mars).
No

?­ like(fanta).
Yes
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Prolog: Negation
● Negation should be used safely: variables used in the negated atoms should 

either
– Be bound

– Not occur elsewhere in the clause

● Not safe:

● Safe:

p(X) :­ not(q(X)).

p(X) :­ q(X),not(t(X)).
p(X) :­ q(X),not(t(X,Y)).
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Prolog: Graph Coloring
● Example code:

● Is this efficient?

edge(a,b). edge(b,c). edge(a,c). 
edge(b,a). edge(c,b). edge(c,a). 

sol(R,G,B) :­ search(R,G,B,[a,b,c]).

no_conflict(C,[]).
no_conflict(C,[C2|L]) :­ not(edge(C,C2)), no_conflict(C,L). 

search([],[],[],[]).
search([C|R],G,B,[C|L]) :­ search(R,G,B,L), no_conflict(C,R).
search(R,[C|G],B,[C|L]) :­ search(R,G,B,L), no_conflict(C,G).
search(R,G,[C|B],[C|L]) :­ search(R,G,B,L), no_conflict(C,B).
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Exercise: Hamilton Path Problem
● Implement the Hamilton Path Problem in Prolog

edge(a,b). edge(b,c). edge(a,c).
edge(b,a). edge(c,b). edge(c,a).

sol(L) :­ search(L,[a,b,c]),no_conflict(L).

no_conflict([C]).
no_conflict([C|[C2|L]]) :­ edge(C,C2),no_conflict([C2|L]).

search([],[]).
search([C|L],L2) :­ member(C,L2),subtract(L2,[C],L3),search(L,L3).
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Seminar
● The seminar starts March 8 or March 15 

● Everybody presents for 45 minutes (one part of a lecture)

● The topics will always be paired on one day, where both topics on the same day 
will be related

● In groups of 2 you will need to make an exercise related to the topic

● Every group delivers one report
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