Programming Systems in Artificial Intelligence

Introduction

Y “’-.“ V J“.b-,. . . .
A7) Universiteit
A Leiden

0, “B7 The Netherlands

Discover the world at Leiden University

Artificial Intelligence

 Artificial intelligence studies the
development of intelligent agents

* An agent is something that perceives
and acts in an environment

« Requires solving several challenges:
- Knowledge representation:

how does an agent represent its knowledge
and perceptions?

- Reasoning, planning:
how does an agent deduce an action based on
its perceptions and its knowledge?

- Learning:
how does an agent update its knowledge

based on its perceptions?

Discover the world at Leiden University

(C++)

Artificial Intelligence & Programming

 How do we implement knowledge,
reasoning, and learning for a specific
application?

* One approach: implement everything
yourself in C++, Java or Python

« Example: learning a neural network

« Advantage:

- You have full control over the computer and
can make the code as efficient as you want

* Disavantages:
- Coding an application takes a lot of time

— The code is not likely to be efficient

class Net

-

public:
Net(const vector=unsigned= &topology);
void feedForward|const vector<double> &inputVals)
void backProp(const vector=double= &targetVals) {};
void getResults|vector<double> &resultvals) const {};

private:

vector=Layer= m_layers; // m_layers([layerNum] [neuroniNum]

k:

void MNet::feedForward(const vector<double> Sinputvals)

{

assert{inputvals.size() == m layers[8].size() - 1);

f/ Assign {latch) the input values into the inpu
for (unsigned i = 8; i = inputVals.size(); ++i) {
m layers[8][1i].setOutputVal{inputvals[i]);

}

/ Forward propagat

for (unsigned layerNum = 1; layerNum < m layers.size();
for (unsigned n = 8; n = m_layers[layerNum].size() -

m layers[layeruum][n].feedForward{b;
}
}
}

Het::Net{const vector=unsigned= &topology)

f

unsigned numLayers = topology.size();

++layerNum) {
1; ++n) {

for (unsigned layerNum = 8; layerNum < numLayers; ++layerNum) {

m_layers.push_back{Layer());

unsigned numOutputs = layerNum == topology.size() -

178 : topology[layerNum + 1];

Discover the world at Leiden University

(scikitlearn)

Artificial Intelligence & Programming

* Second approach: implement in C++,
Python or Java, using libraries

« Example: learning a classifier using
scikitlearn

« Advantages:

- Common functionality is easy to use: it is
hidden in the “black box” of the library

- Common tasks are executed efficiently: a good
library is implemented efficiently

« Disadvantages:

- Many libraries are not programmable and can
hence only be used to perform common tasks

from sklearn import datasets, svm, metrics

digits = datasets.load_digits()

n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

. - -
B e -] = - . . - i 1 R I -] = - 3

classifier é-ﬁﬁMTSQﬁtéahma=ﬁ;OﬂiJ-

el - - - 4

| - L S 4~ £ = - 4 | M- ' 4 4+ ke L -

ClééSifiEf.fif[dé%E[:ﬂ;SaﬁpiES_f.é],.
digits.targetl[:n_samples / 2])

el - - N L - - ~ 4 T A+ a4 S L ha =

Eibeéted = digits.target[n_samples / 2:]
predicted = classifier.predict(dataln_samples / 2:1)

Print[“(la55ificatiﬂn report for classifier :\n
\n"
% (classifier,
metrics.classification_report(expected,
predicted)))
print("Confusion matrix:\n%s" %
metrics.confusion_matrix(expected, predicted))

Discover the world at Leiden University

(MiniZinc)
Artificial Intelligence & Programming

include "alldifferent.mzn";

» Third approach: develop a specialized

language for a range of tasks in artificial int: s;
. . 1 . = * .
intelligence tnt: =S %S
set of int: PuzzleRange = 1..N;
« Example: solving sudoku in the MiniZinc set of int: SubSquareRange = 1..S;
language array[l..N,1..N] of 0..N: start;
array[l..N,1..N] of var PuzzleRange: puzzle;
2' 3 5 constraint forall(i,j in PuzzleRange) (
if start[i,]j] > 0 then puzzle[i,]] = start([i,]]
8 2 7 9 3 else true endif);
6 4 9 8 constraint forall (i in PuzzleRange) (
2. 7 4 alldifferent([puzzle[i,J] | j in PuzzleRange]));
constraint forall (j in PuzzleRange) (
9 8 1 alldifferent([puzzle[i,j] | i in PuzzleRange]));
2 constraint forall (a, o in SubSquareRange) (
alldifferent([puzzle[(a-1) *S + al,
8 3 (0o-1)*S + ol] | al, ol in SubSquareRange]));
6 2 1 solve satisfy;
4 1 8

Discover the world at Leiden University

(MiniZinc)
Artificial Intelligence & Programming

include "alldifferent.mzn";

» Third approach: develop a specialized
language for a range of tasks in artificial int: s;
intelligence e E s

set of int: PuzzleRange = 1..N;
set of int: SubSquareRange = 1..S;

« Example: solving sudoku in the MiniZinc
language array[l..N,1..N] of 0..N: start;

array[l..N,1..N] of var PuzzleRange: puzzle;

* AdvantageS: constraint forall(i,j in PuzzleRange) (
) . if start[i,]j] > 0 then puzzle[i,]] = start([i,]]
- The range of tasks in the scope of the language is else true endif);

implemented easil
P y constraint forall (i in PuzzleRange) (

- The range of tasks in the scope of the language is alldifferent([puzzle[i,J] | j in PuzzleRange]));

implemented reasonably efficient]
P y y constraint forall (j in PuzzleRange) (

. alldifferent([puzzle[i,]] | i in PuzzleRange]));
« Disadvantages:

constraint forall (a, o in SubSquareRange) (

— The programmer needs to learn a new language alldifferent([puzzle[(a-1) *S + al,
(0o-1)*S + ol] | al, ol in SubSquareRange]));
- The programs are not as efficient as highly optimized
code written in assembler or C by a highly skilled solve satisfy;
programmer

Discover the world at Leiden University

Artificial Intelligence & Programming

» Combined second and third approach:
embed a specialized language using libraries
in a general purpose language

« Example: solving sudoku using Numberjack
and Python

» Advantages:

- The range of tasks in the scope of the language is still
implemented relatively easily

- The range of tasks in the scope of the language is
implemented reasonably efficiently

« Disadvantages:

- The code can be less elegant than that of a specialized
language

- The programs are not as efficient as highly optimized
code written in assembler or C by a highly skilled
programmer

from Numberjack import *
import puzzles

start = puzzles.read ()

S = start.size ()

N=S*3S§S

puzzle = Matrix(N, N, 1, N)

sudoku = Model (\

[puzzle[i,j] == start[i,]]
for i in range(0,N)
for j in range(0,N)
if start[i,j] > 0 1],

[All1Diff(row) for row in puzzle.row],
[A1l1Diff(col) for col in puzzle.col],

[AL1IDiff (matrix[i:i+S, j:j+S])
for i in range(0, N, S)
for j in range(0, N, S)]
)

solver = sudoku.load ("Mistral")
solver.solve ()

(Numberjack)

P A L L

Discover the world at Leiden University

Focus of This Lecture Series

Specialized programming languages for artificial intelligence

Embedded languages for artificial intelligence

Algorithms used to execute these languages

Examples of how these languages can be used

Discover the world at Leiden University

Constraint Programming

* Programming languages for solving 7 3
constraint satisfaction and
constraint optimization problems 8 2

Q0 -
O WLh
N

« Constraint satisfaction problems are 6 4 9
problems of the form: D 7 4

- Given
- Find one assignment to variables 9 8 1

- Such that constraints on the variables 4 2
are satisfied

Discover the world at Leiden University

Constraint Programming

« Given: a puzzle start
* Find: assignment to variables

E ..E

11 eee 99

 Such that:

— Variables have values in the domains
E; € {1...9} ifstart;=o0
E; = start; if start; > o

— These constraints are satisfied:

all_different([E E E,])

11,120°°*>

all_different([E_ E E,J)

21, 225°%*)

gll_diﬁ‘erent([E _E E,]

11,215 *>

11,7~ 22°**» 3

.c{ll_diﬁ‘erent([E_E E.])

Discover the world at Leiden University

S

41

51

= | ON

42

2

N O

oo | b~ =

(MiniZinc)

Constraint Programming

include "alldifferent.mzn";
2 3 5

int: S; Given

8 2 7 9 3 int: N = § * §;

set of int: PuzzleRange = 1..N

6 4 9 8 set of int: SubSquareRange = 1..S;
array[l..N,1..N] of 0..N: start;
E :Z ,7 41 array[l..N,1..N] of var PuzzleRange: E; Variables
H + constraint forall(i,j in PuzzleRange) (
8 if start[i,j] > 0 then E[i,]j] = start[i,]]
51 o 1 else true endif);

Constraint: start puzzle

constraint forall (i in PuzzleRange) (\
| alldifferent([E[i,j] | j in PuzzleRange])); |

o O

oo | &~ M

3 . constraint forall (j in PuzzleRange) (
| alldifferent([E[i,j] | i in PuzzleRange]));

6 2 1 ' constraint forall (a, o in SubSquareRange) (|
| alldifferent([E[(a-1l) *S + al, |

| (o-1)*S + ol] | al, ol in SubSquareRange])); |
4 1 o ~ Constraints: different numbers in rows, columns, blocks

solve satisfy;

Discover the world at Leiden University

Constraint Programming

e Dutch railways introduced a new
schedule in 2006 after a failed
attempt to introduce “a circle around

the church”

» Annual profits increased with €40
million after the introduction of the
schedule

* The periodic event scheduling
problem (scheduling of the trains;
personel is not scheduled
periodically) was solved using a A
constraint programming system i -9,' .

Discover the world at Leiden University

(ILOG)

Constraint Programming

» Links shippers to a network of 200

shipping lines with connections to = P OF
600 ports in 123 countries] S IN G AP O RE

« Assign yard locations and loading
plans under various operational and
safety requirements

* Solution: Yard planning system,
based on constraint programming

Discover the world at Leiden University

f Kihurch)
Probabilistic Programming 4

1) The probability of breast cancer is 1% for {
a woman at 40 who participates in a V-f
routine screening.

2) If a woman has breast cancer, the
probability is 80% that she will have a
positive mammography.

0.8 x 0.01

3) If a woman does not have breast cancer, — 0.078
the probability is 9.6% that she will also 0.8 X 0.01 + 0.096 x 0.99
have a positive mammography.

4) A woman in this age group had a positive
mammography in a routine screening.

5) What is the probability that she actually
has breast cancer?

Discover the world at Leiden University

[iChurch)
Probabilistic Programming 'V

1) The probability of breast cancer is 1% for (define samples ..
a woman at 40 who participates in a (mh—query 100 100) 4

routine screening. , _
(define breast-cancer (flip 0.01)) 1)

2) If a woman has breast cancer, the TN T L ———

probability is 80% that she will have a _

positive mammography. (I 1SRRI e RN RS 2)

flip 0.8

3) If a woman does not have breast cancer, (Tp)

the probability is 9.6% that she will also (flip 0.096))) 3)

have a positive mammography. breast—cancer 5)
4) A woman in this age group had a positive positive-mammogram 4)

mammography in a routine screening.)
5) What is the probability that she actually)

has breast cancer? (hist samples "breast cancer")

Discover the world at Leiden University

(Picture)

Probabilistic Programming

function PROGRAM(MU, PC, EV, VERTEX ORDER)

Generate 3D faces based on 2D pictures

face=Dict(); shape = []; texture = [];
Of a face for S in ["shape", "texture"] SpeC|f|Cat|On
for p in ["nose", "eyes", "outline", "lips"] of distributions
coeff = MvNormal(0,1,1,99) /
Inferred model Inferred model
G:j:;n;e'd recLT:trrrfcdtinn} re-rendered with re-rendered with tace[S][p] = MU[S][p]+PC[S][p].*(coett.*EV[S][p])
g (novel poses naovel lighting end
end
.l
T shape = face["shape"][:]; tex = face["texture"][:];

camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)

rendered img = MeshRenderer (shape,tex,light,camera)

i

5 ren_ftrs = getFeatures("CNN_Convé6", rendered img)

observe (MvNormal(0,0.01), rendered img-obs_img)
observe (MvNormal(0,10), ren_ ftrs-obs cnn) Observatlons
end

global obs_img = imread("test.png")

global obs_cnn = getFeatures("CNN_Conv6", img)
TR = trace(PROGRAM,args=[MU,PC,EV,VERTEX ORDER])

learn_datadriven proposals(TR,100000,"CNN_Convé")

Y
v
<

load_proposals(TR)
infer (TR,CB,20, ["DATA-DRIVEN"])

infer(TR,CB,200, ["ELLIPTICAL"])

Discover the world at Leiden University

(Figaro, Problog)

Probabilistic Programming

Computer Vision

* Spam filters

* Speech recognition
« Bioinformatics

* Network analysis

Discover the world at Leiden University

(Theano)

“Algebraic Programming”

e Neural networks, sum product
networks can be seen as large
algebraic expressions

» Can we write such expressions down
in a simple language and
automatically optimize them?

- Running independent expressions in parallel

- Performing optimizations
X/y*y =X
- Common subexpression elimination

- Symbolic differentation
f(x) = x2
df/dx = 2x

import theano
from theano import tensor

#

declare two symbolic floating-point

scalars

a
b

= tensor.dscalar()
= tensor.dscalar()

create a simple expression

c =a-+Db

Hh = FH= =

#

convert the expression into a callable
object that takes (a,b)

values as input and computes a value for c
= theano.function([a,b], ¢)

bind 1.5 to 'a', 2.5 to 'b', evaluate 'c'

assert 4.0 == £(1.5, 2.5)

Discover the world at Leiden University

(TensorFlow)

“Algebraic Programming”

Declare the learning

import tensorflow as tf # Minimize the mean squared errors.

import numpy as np problem loss = tf.reduce mean(tf.square(y -
y_data))
_ _ optimizer = \
Create 100 phony x, y data points \in tf.train.GradientDescentOptimizer(0.5)
NumPy, v = x * 0.1 + 0.3 train = optimizer.minimize(loss)

X data = np.random.rand(100).
astype("float32")
y data = x data * 0.1 + 0.3

Before starting, initialize the
variables. We will 'run' this first.
init = tf.initialize all variables()

Try to find values for W and b that # Launch the graph. Solves the learning
compute y data = W * x data + b SEEE = RSB) problem
— — sess.run(init)

(We know that W should be 0.1 and b 0.3,
Tensorflow will figure that out for us.) # Fit the line.
W = tf.Variable(tf.random_uniform([1], for step in xrange(201):

-1.0, 1.0)) sess.run(train)
b = tf.vVariable(tf.zeros([1])) LiE step o AU ==

print step, sess.run(W),

y = W * x_data + b sess.run(b)

Discover the world at Leiden University

“Algebraic Programming”

* Google Photos

Google Voice Search

Google Translate

Handwriting recognition

Discover the world at Leiden University

Artificial Intelligence <
Declarative Programming

* Declarative programming allows to program WHAT the computer has to do:

- Find a solution to a constraint satisfaction problem
- Calculate the probability of a certain event given observations

- Find the optimum to a numerical optimization problem with a well-defined loss function

* Does not specify HOW the computer has to do this

Discover the world at Leiden University

Programming Paradigms in Al

Two main traditional programming paradigms in Al:
e Logic programming

* Functional progamming

Discover the world at Leiden University

Logic Programming

Developed in 1972-1973 to allow the
implementation of intelligent systems that
one could ask questions to

Every psychiatrist is a person.
Every person he analyzes is sick.

Jacques is a psychiatrist in Marseille.

Is Jacques a person?
Where is Jacques?

Is Jacques sick?

Discover the world at Leiden University

The birth of Prolog

Alain Colmerager' ancd Fhilippe Rousel

Logic Programming

Most popular language is Prolog

Prolog is the basis for:

* Constraint logic programming
systems

* Probabilistic logic programming
systems

» Algebraic logic programming systems

Discover the world at Leiden University

Functional Programming

* Development started in 1958: LISP (LISt Processing)

* Program and data consists of lists that are manipulated using functions
» Expressions perform symbolic manipulation

» Most of early Al was symbolic

» LISP was used for instance in:
- The Dynamic Analysis and Replanning Tool used during the first Gulf War to plan military movements
- SPIKE, the planning and scheduling application for the Hubble Space Telescope

- American Express Authorizer's Assistant, checking credit card transactions in the early 1990s

* Functional programming is the basis for
— Probabilistic functional programming

- Functional reactive programming

Discover the world at Leiden University

Course Overview

1) Lectures
¢ Concepts of logic programming, functional programming
* Introduction to constraint programming
* Introduction to probabilistic programming

* Introduction to algebraic programming
2) Paper presentations

3) Practical exercise

Grade is determined by
» Paper presentation: 20%
 Active participation in paper presentations: 10%

» Exercise and report: 70%

Discover the world at Leiden University

Practical Information

e Tuesdays at 11:15 in room 403

 Website: www.liacs.leidenuniv.nl/home/snijssen/PSAI
 Room number: 110

e E-mail address: s.nijssen@liacs.leidenuniv.nl

* No book: we use papers

e Marked as “SCDM” in the schedule...

Discover the world at Leiden University

http://www.liacs.leidenuniv.nl/home/snijssen/PSAI
mailto:s.nijssen@liacs.leidenuniv.nl

Context in Leiden

* Builds upon two bachelor courses in particular:
- Concepts of programming languages

- Artificial intelligence

» Isrelated to many other master courses:
- Bayesion networks
- Neural networks
- Databases and data mining
- Advances in data mining
- Seminar distributed data mining
— Multicriteria Optimization and Decision Analysis
- Seminar combinatorial algorithms

- Parallel algorithms

Discover the world at Leiden University

	Title presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

