Programming Systems in Artificial Intelligence

Functional Programming

& “’-.“ V J“.b-,. . . .
A7) Universiteit
N NiEd) Leiden

R, § _s\o'**é The Netherlands

Discover the world at Leiden University

Overview

 Foundations: lambda calculus

* Functional programming languages and their concepts
— LISP / Scheme
- Haskell
- Other languages

« Foundations: monads

Discover the world at Leiden University

Based on Rojas, “A tutorial on the
Lambda calculus”

Lambda Calculus

Invented by Alonzo Church in the early 1930s

Is a universal model of computation and equivalent to the Turing Machine
(Church-Turing thesis, 1937)

Has a different perspective on performing calculations:
— Turing machines are built on execution instructions (imperative coding style)

- Lambda calculus is built on rewriting function applications (declarative coding style)

Is the formal basis for functional programming languages

Discover the world at Leiden University

Lambda Calculus: Expressions

« An expression in lambda calculus defined recursively as follows:

<expression> := <variable> | <function> | <application>
<function> := (A <variable>.<expression>)
<application> := (<expression> <expression>)

* Functions and variables are written down using identifiers

« Examples of expressions:

(Ax.x)

Discover the world at Leiden University

Lambda Calculus: Notation

* Brackets around applications can be removed; applications are left associative:
(xy)z = xyz

» Brackets around functions can be removed; the inner expression reaches as far
right as possible:

(Ax.(zy)) = Ar.xy Z (A\x.2)y

* A sequence of lambdas is contracted:

ALY N2.2Yz = A\xyz.0Y2

 We can give names to expressions:

P = (\zxz.x) Q= (\y.y) PQ = (Ax.x)(Ay.y)

Discover the world at Leiden University

Lambda Calculus: Free/Bound Variables

e Lambdas are similar to quantifiers in first-order logic; they bind variables

AT. XY

/N

Bound Free

(Ax.x)(\y.yx)

[]

Bound Free

Discover the world at Leiden University

Lambda Calculus: Substitutions

* Function applications can be rewritten using substitutions:

()\.I'El)(EQ) — E1(9
with 6 = {QZ‘ > E2}

« Examples:
(Azx.x)y=ax{x—y} =1y
(Az.x)(\y.y) = x{z — \y.y} = Ay.y

* Avoid naming conflicts by renaming variables; expressions with only different
variable names are equivalent!

(Ax.(Ay.xy))y # \y.yy (Az.(A\y.xy))y = (Ax.(At.xt))y = M.yt

Discover the world at Leiden University

Computations using Lambda Calculus

* Define the following expressions:

T = Ary.x

F = \xy.y

N = Axy.xyF
e Then:

NTF = (Aey.aoyF)TF = (M\yTyF)F =TFF = (\zy.x)FF = (\y.F)F = F
ANTT = Aey.xyF)TT = Ay Ty T =TTF = (Axy.x)TF = (M. T)F =T
ANFF = (Azy.xyF)FF = (My.FyF)F = FFF = (Axy.y)FF = (Ay.y)F = F

Discover the world at Leiden University

Computations using Lambda Calculus

* Define the following expressions:

T = Ary.x

F = \xy.y

N = Axy.xyF

V = Azy.x1y
e Then:

~(VINTF)F)=-(VTF)=—-(T)=F

Discover the world at Leiden University

Computations using Lambda Calculus

* Define the following expressions:

1 = Asz.sz
2 = \sz.s(sz)
3 = Asz.s(s(sz))

S = \wyzx.y(wyr)
e Then:
S1 = (Awyx.y(wyx))l = Ayz.y(lyxr) = \yz.y(yx) = Asz.s(sz) = 2
S2 = (Awyx.y(wyx))2 = Ayx.yLyx) = \yz.y(y(yx)) = Asz.s(s(sz)) = 3

Discover the world at Leiden University

Computations using Lambda Calculus

» Exercise:
Calculate the outcome of 2S3

1 = Asz.sz
2 = Asz.s5(sz2)
3 = Asz.s(s(sz))

S = dwyx.y(wyx)

Discover the world at Leiden University

Computations using Lambda Calculus

» Exercise:
Calculate the outcome of 2S3
1 = \sz.sz (Asz.5(82))S)3 =
2 = A\sz.5(sz2) (A2.5(5%2))3 =

3= Asz.s(s(sz)) S(S3)=5

S = dwyx.y(wyx)

Discover the world at Leiden University

LISP

List Processing languages: has a large focus on manipulating lists

Programming language implementing ideas found in Lambda Calculus

Development started in 1957, with many variations existing today

* Current languages strongly inspired by LISP:

- Common Lisp (the current standard)

- Scheme (simplified version of LISP, the basis for the Church probabilistic programming
system)
- Clojure (the basis for the Anglican probabilistic programming system, runs on the Java VM,

can use Java libraries)

Discover the world at Leiden University

(Sussman and Steele, 1975)

Scheme
» Uses prefix notation similar to Lambda Calculus
(+ 3 4)
(* 56)
(and #T #F)
(and (or #T #F) #T)

« Lambda functions can be defined

(lambda (x) (* X X))

* And applied:

((lambda (x) (* x xXx)) 7)

Discover the world at Leiden University

Scheme

* Note: lists are everywhere in LISP...

(+ 3 4) < List with +, 3, 4

(* 56)

(and #T #F)

(and (or #T #F) #T) - List with and, (or #T #F), #T
(lambda (x) (* x X)) - List with LAMBDA, (), (* X X)

((lambda (x) (* x x)) 7)

« Expressions constructed using (nested) lists, such as in Scheme, are called “s-
expressions”

Discover the world at Leiden University

Scheme: Definitions

 We can give names to expressions
(define pi 3.14)
(define two pi (* 2 pi))
e This includes lambda expressions

(define £ (lambda (xy) (* Xy)))

e After which one can write

f 35

Discover the world at Leiden University

Scheme: Definitions

e There is a shorthand notation for function definitions:

(define £ (lambda (xy) (* xy)))

—

(define (£ xy) (* Xy))

* These definitions are 100% equivalent

* Scheme is strict: all arguments of a function call must be evaluated before the function is called,
and all arguments must be specified

« These lines will give error messages for both definitions of £, whether or not lambda functions are
used:

(£ 1)
(£)

Discover the world at Leiden University

Scheme: Control Flow

 If statements require a boolean predicate as first parameter

(define (factorial n)
(if (<= n 1)
1
(* n (factorial (- n 1)))

))

* Predicates can be defined using functions, and have names ending with ?

(define (leap? year)
(if (zero? (modulo year 400)) #T
(if (zero? (modulo year 100)) #F
(zero? (modulo year 4))

)

)
(leap? 2016)

Discover the world at Leiden University

Scheme: Control Flow

» This long code:

(define (leap? year)
(if (zero? (modulo year 400)) #T
(if (zero? (modulo year 100)) #F
(zero? (modulo year 4))

)
)
)

e Can be shortened to:

(define (leap? year)
(cond
((zero? (modulo year 400)) #T)
((zero? (modulo year 100)) #F)
(else (zero? (modulo year 4)))

)
)

Discover the world at Leiden University

Scheme: List Manipulation

* The four most important functions manipulating lists are:
- car L:returns the first element of the list
- cdr L:returns the tail of the list
- cons a L:prepends a in front of the list L

- null? L:test wether the list is empty

« Example: sum up all elements in a list:

(define (add L) (if (null? L) 0 (+ (car L) (add (cdr L))))
(add '(1 3 4))

» Note: 'indicates that the list after the 'is not evaluated as a piece of Scheme code, but rather is
stored as a list; without ', (1 3 4) would be seen as applying function 1 on arguments 3 and 4,
which yields an error

Discover the world at Leiden University

Scheme: List Manipulation

« Given that programs are list, Scheme code can create new code and execute it
using an eval function

(define (productify L)
(cond Treat + as a symbol, not as a function that needs to be evaluated

((null? L) ())

((list? (car L)) (cons (productify (car L)) (productify (cdr L))))
((eq? (car L) '+) (cons '* (productify (cdr L))))

(else (cons (car L) (productify (cdr L))))

)

(eval (productify '(+ 2 (+ 3 4)) (the-environment))

Discover the world at Leiden University

Scheme: Exercise

« Implement a function append that takes two lists as argument and concatenates
them

(define (append listl 1list2)
(1f (null? listl)
list2
(cons (car listl) (append (cdr listl) list2))

Discover the world at Leiden University

Scheme: Map

e A common function in functional programming is the map function:

(define (map fun a list)
(if (null? a list)
()
(cons
(fun (car a list))
(map fun (cdr a list))

« Example application:
(map (lambda (x) (* x x)) '"(1 2 3))

Discover the world at Leiden University

Scheme: Reduce

e A common function in functional programming is the reduce function:

(define (reduce fun a list)
(if (null? (cdr a list))
(car a list)
(fun (car a list) (reduce fun (cdr a list))

« Example application:

(reduce (lambda (x y) (+ xvy)) '"(1 2 3))

Discover the world at Leiden University

Scheme: Printing

 The display function writes its argument to the screen and returns undefined

(display (+ 3 4))

« Howto call display in a function?

(define (add x vy)
(begin - Starts a block of consecutive function calls
(display Xx)

(display y)
(+ Xy) = This is returned by the code block

Discover the world at Leiden University

Scheme: Properties

* Scheme with IO operations is not pure:
— If the order of function call evaluation changes, the output of the code changes

— This makes it hard to parallelize, optimize

Scheme notation can be cumbersome

Scheme does not have static types (int, float, ...)

* Scheme lacks concepts found in lambda calculus: eg. rewriting of this kind:
(Azy.zy)l = \y.1ly

Up next: languages that address these weaknesses...

Discover the world at Leiden University

Haskell

« Haskell 1.0 was defined in 1990 by a committee of researchers in functional
programming

* Properties:
- Not strict: not all arguments of a function call do need to be specified; this leads to lazy evaluation

- Pure: functions do not have side effects; a different order of functional calls will never change the
output; Monads are used to deal with side effects

- Infix notation: infix notation can be used
- List notation: a more convenient notation for dealing with lists
- Types: variables and functions have strict types

- Pattern matching: conditions can be expressed using patterns

Discover the world at Leiden University

Haskell: Functions

* Type definition:
factorial :: Integer -> Integer

« Example using IF notation:

factorial n = 1if n > 0 then n * factorial (n-1) else 1

« Example using guard notation:

factorial n
n < 2 1
otherwise = n * factorial (n - 1)

Discover the world at Leiden University

Haskell: Lambda Functions

* The following two statements are equivalent:

increment :: Integer -> Integer

increment n = n + 1

and
increment :: Integer -> Integer

increment = \n -> n + 1

Discover the world at Leiden University

Haskell: Lists

* Prolog-like notation
[1, 2, 4]
« Pattern matching can be used to perform tests on lists, similar to Prolog

« Example:
add :: [Integer] -> Integer

acc [l 70 Function definiti luated top-to-bott
add (a:l) = a + add l unctuon detinions are evaluated top-to-potiom

|

Pattern that matches the head of the list and the tail of the list

Discover the world at Leiden University

Haskell: Lists

e Lists can be created in a similar manner

« Example:

generate :: Integer -> [Integer]

generate 0 []
generate n = n : generate (n — 1)

Discover the world at Leiden University

Haskell: Currying

« The following code is not strict, as we call the function incr without specifying
its two parameters; in that case, a function is returned

add :: Integer -> Integer -> Integer

add xX y = xXx + vy ‘\\\\\

incr = add 1 ,
: : , Can be read as:
malin = print (incr 2)

integer -» (integer - integer)

If one integer is given as a parameter, the
function returns a function in which x is substituted

with the integer, i.e., here the result of

add 1

is a lambda function with argument y that returns 1 + y

Discover the world at Leiden University

Haskell: Lazy Evaluation

* Suppose we have the following program:

generate :: Integer -> [Integer|]
generate n = n : generate (n + 1)

main = print (generate 0)
* This program will not terminate

 However, this program terminates:

take 0 L = []
take n (a:l) = a : take (n-1) 1

main = print (take 2 (generate 0)

Discover the world at Leiden University

)

Haskell: Lazy Evaluation

take 2 (generate 0) generate n = n : generate (n + 1)
take 2 (0 : generate (0+1)) take 0 L = []
I take n (a:l) = a : take (n-1) 1
0 & take (2-1) (¢generate (0+1)) main = print (take 2 (generate 0))
0 : take 1 (generate (0+1))
v
0 : take 1 ((0+1) : (generate (0+1+1))
v
0 : take 1 (1 : (generate (0+1+1))
v
0 : 1 : take (1-1) (generate (0+1+1))
v

0 : 1 : take 0 (generate (0+1+1))

’

0 1 : []

Discover the world at Leiden University

Haskell: Lazy Evaluation

e Strictness can be forced

generate :: Integer -> [Integer|]
generate n =
let Syntax can be used to define a term that
nplus = n + 1 - is used In the body of the function multiple
in times

seq nplus (n : generate plus)

main = print (generate 0)

Forces evaluation

Discover the world at Leiden University

Haskell: Data Types

« Complex data types can be defined in Haskell using type & data constructors

« Example: binary trees

Type constructor Data constructor

data Tree a = Tip | Node a (Tree a) (Tree a)
sumTree :: Num a =>_Tree a -> a
- \ As + can only be applied on numericals, sumTree

sumTree Tip = 0 /is only defined for Num
sumTree (Node v a b) = v + sumTree a + sumTree b

main = print (sumTree (Node 3 (Node 4 Tip Tip) Tip))

Discover the world at Leiden University

Haskell: 10 Monad

« Haskell is pure: functions do not have side effects
 How to print?

» Conceptually, an I0 monad can be thought of as a type

A conceptual data type
data IO a = RealWorld -> (RealWorlﬁ that reflects the state that
the computer is in

Over which certain operations are defined

e For instance:

— The signature of print is:

“Em t b
print :: String -> IO ()/ Py

— The signature of readLn is:

readLn :: IO String

Discover the world at Leiden University

Haskell: 10 Monad

* An example of the execution of this code:
main = print “Hello”
« Thetypeof mainismain :: IO ()
« The state of the world before the program is executed is w

* (print “hello”) isa function with signature
RealWorld -> (RealWorld, ())

e The Haskell runtime evaluates main by calling it with world w as parameter

main w

the result is a new world in which “Hello” is on the screen

Discover the world at Leiden University

Haskell: 10 Monad

« Two prints can be combined; in low-level code, as follows:

main :: RealWorld -> (RealWorld, ())

main worldQ =

let
(worldl,a) = print “Textl” worldO
(world2,b) = print “Text2” worldl

in (world2, ())

e This code is cumbersome; let us define a new function to make this easier:

(>>) ¢ d = \worldO =>
let (worldl,a) = c worldO
let (world2,b) = d worldl
in (world2, ())

Discover the world at Leiden University

Haskell: 10 Monad

e This code is cumbersome; let us define a new function to make this easier:

(>>) ¢ d = \worldO =>
let (worldl,a) = c¢ world0
let (world2,b) = d worldl
in ((), world2)

« Now we can write:

main :: RealWorld -> (RealWorld, ())
main = (>>) (print “Textl”) (print “Text2”)

 Alternatively,

main = print “Textl” >> print “Text2”

Discover the world at Leiden University

Haskell: 10 Monad

« Alternatively,
main = print “Textl” >> print “Text2”

main = do
print “Textl”
print “Text2”

 Note:

- in this notation a “world” object is implicitly passed from the one function call to the other function call

- functions for which the signature does not include an IO object, can not perform 10

Discover the world at Leiden University

Other Monads

» Alternative definitions of >>, for different Monads, can serve other purposes

* For example, the Maybe monad:

data Maybe t = Just t | Nothing

div :: Float -> Float -> Maybe Float
div x 0 = Nothing
div x y = Just (x/y)

docalc :: Maybe Float -> Maybe Float -> Maybe Float -> Maybe Float
docalc a b ¢ = do

X <— a

y <= b

zZ <— C

t <- div x vy

div x t

Discover the world at Leiden University

Other Functional Programming Languages

« ML, Miranda: predecessors of Haskell

* F#, Scala: multi-paradigm languages that include functional primitives

def addB(X:Int): Int => (Int => Int) = (yv=> (z2z=>xXx+y + 2z)) Factorie’
Figaro,
val a = addB(1)(2)(3) Oscar
println(a)
lazy val x = { print ("foo") ; 10 }
print ("bar")
print (x)
print (x) Scala
let rec fact x = Infer. NET
if x <1 then 1
else x * fact (x — 1)
Console.WriteLine(fact 6) =

Discover the world at Leiden University

Overview Lectures

e 8 march: End of functional programming
1) 15 march: Dyna

2) 22 march: Gringo / Clasp

3) 29 march: ECLiPSe, FO(.)

4) 5 april: Gecode, MiniZinc

5) 12 april: Markov Logic

6) 19 april: PRISM, Problog

7) 26 april: Church

8)3 may: Factorie

9)10 may: Tensorflow, Theano

Discover the world at Leiden University

Overview Lectures

* 8 march: End of functional programming

e 15 march: No lecture

1) 22 march: Dyna Mats Derk, Renuka Ramgolam, -

2) 29 march: ECLiPSe, FO(.) (1), (2), (3)

3) 5 april: Gecode, MiniZinc Jelco Burger, Anne Hommelberg, (4)

4)12 april: Markov Logic Gogou Evangelia, Stellios Paraschiakos, Nick van den Bosch
5) 19 april: Markov Logic Mark Post, +2

6) 26 april: PRISM, Problog Hanjo Boekhout, (5), -

7) 3 may: Church, Factorie Raymond Parag, (6), (7)

8)10 may: Tensorflow, Theano Arthur van Rooijen, Lau Bannenberg, -

Discover the world at Leiden University

Content Presentation

» Motivation: discuss applications of the programming system

« Examples: provide one or more concrete illustrative examples of programs in the
programming system, showing code

» Concepts: discuss on which fundamental concepts the programming system is
based

« Execution: discuss how statements in the programming system are executed

» Results: show some experimental results reported in the literature (run time,
quality, ...)

Discover the world at Leiden University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47

