
Applying Monte Carlo Techniques
to the Capacitated Vehicle Routing Problem

Frank W. Takes Walter A. Kosters

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
Abstract

This paper describes a new method for solving the Capacitated Vehicle Routing Problem (CVRP). The
CVRP is defined as the problem of delivering goods from a depot to a number of customers with a fleet
of capacitated vehicles, minimizing the cost of distributing the goods while respecting the capacity con-
straints of the vehicles. We have developed a method based on Monte Carlo Simulation (MCS) and the
Clarke & Wright Savings (CWS) heuristic that, with similar memory and CPU usage, outperforms previ-
ous best known Monte-Carlo-based algorithms for the CVRP. Performance is comparable with that of the
current state-of-the-art methods based on metaheuristics.

1 Introduction
The Vehicle Routing Problem (VRP) is a widely studied [17] NP-hard [16] combinatorial optimization prob-
lem that was introduced in 1959 by Dantzig and Ramser [9]. In the capacitated variant we are given a num-
ber of customers (nodes), each with its own numerical demand, the distance between each pair of customers
(edges), and a number of capacitated vehicles that can, starting from the depot (a special node), traverse the
edges and serve the customers. Many variants of the problem have been suggested, but the main objective is
to minimize the total distance traveled while respecting the capacity constraints of the vehicles.

The problem is not only of scientific value, but it is also important to the industry sector. Large pack-
age shipping companies benefit greatly from implementing the Vehicle Routing Problem as efficiently as
possible: every percentage saved on transportation costs means saving tremendous amounts of money.

The term Monte Carlo Techniques (MCT) is used to describe a class of widely used algorithms that rely
on the use of random sampling to finally acquire a solution to an optimization problem. Often, the deci-
sions made when traversing the search space are based on performing random simulations for the possible
successor states. We will see that these techniques can also be applied to the VRP.

Section 2 starts with a description of the Vehicle Routing Problem and its variants. Several solution
methods are presented in Section 3. Monte Carlo Techniques are introduced in Section 4, and Section 5
describes how these techniques can be applied to the Vehicle Routing Problem. We will propose a new
Monte-Carlo-based algorithm and study its performance in Section 6. Section 7 concludes.

2 Vehicle Routing Problem
This section outlines and formally defines the VRP, ending with an overview of the most common variants.

2.1 Problem Definition
A customer is an entity that has a certain demand and therefore requires the presence of a vehicle, a “sales-
man” that can move between customers and the depot, a unit that initially possesses the demands of the
customers. The fleet is defined as the total group of vehicles. Moving a vehicle between the depot and the
customers comes with a certain cost. A route is a sequence of visited customers for a certain vehicle, and
starts and ends at the depot. The goal of the basic VRP is to serve all customers, minimizing the total cost
of the routes of all vehicles. Depending on the considered variant of the VRP (see Section 2.3), additional
constraints, such as vehicle capacities, may apply. A visual example of the VRP is given in Figure 1.



Figure 1: Example of a VRP instance with
n = 13 and m = 3. To keep visualiza-
tion simple, the graph is not complete. Image
courtesy of Markus Chimani, Univ. Lena

Figure 2: Visualization of a solution of an instance with
n = 200 and m = 17 (instance 200-17B,see Table 2)

2.2 Formal Definition
The underlying structure of the VRP is a complete (fully connected) directed graph G(V,E). This structure
and notations with respect to vehicles, routes and the associated cost is outlined in the following definitions:

• V = {v0, v1, . . . , vn} is a set of n+1 (n ≥ 1) vertices. We distinguish the depot v0 and n customers.

• E = {(vi, vj) | 0 ≤ i, j ≤ n, i 6= j} is the set of edges (arcs) between the vertices, called the roads.

• C = (cij) is a cost matrix, with cij > 0 representing the cost of traversing edge (vi, vj). For all i,
we define cii = 0. The triangle inequality holds: cij ≤ cik + ckj (0 ≤ i, j, k ≤ n). If cij = cji for
all customers i and j, we talk about the Symmetric VRP. If there exist customers i and j for which
cij 6= cji, we consider it to be an Asymmetric VRP. We will also denote cij = c(vi, vj).

• m, with 1 ≤ m ≤ n, is defined as the number of vehicles, or the fleet size.

• Ri = (vi0, v
i
1, . . . , v

i
ki
, viki+1) is the vector of the route of vehicle i (with vi0 = viki+1 = v0, vij 6= vi`,

0 ≤ j < ` ≤ ki), starting and ending at the depot. Here ki is the length of route Ri.

• S = {R1, R2, . . . , Rm} is a set of routes representing the solution of a VRP instance.

• C(Ri) =
∑ki
j=0 c(v

i
j , v

i
j+1) is defined as the cost of route Ri.

• C(S) =
∑m
i=1 C(Ri) is defined as the total cost of solution S, satisfying Ri ∩ Rj = {v0} for all

routes Ri and Rj (1 ≤ i, j ≤ m, i 6= j), and ∪mi=1Ri = V , so that each customer is served exactly
once. Here we treat the route vectors as sets to keep notation simple.

• d = (d0, d1, . . . , dn) with all di > 0 (1 ≤ i ≤ n) is a vector of the customer demands; d0, the demand
of the depot, is always equal to 0. We will also denote the demand di of customer vi as d(vi).

We have now defined the Vehicle Routing Problem in terms of a minimization problem (or actually, as
a Multiple Traveling Salesman Problem), as the main task at hand is to minimize the value of C(S). The
constraint that is related to the correlation between the demands and the vehicle routes is specific to the
considered variant of the VRP, and therefore outlined in the next subsection.

2.3 Variants
This subsection describes the most common variants of the Vehicle Routing Problem that have been sug-
gested in literature. Note that these variants do not necessarily exclude each other; combinations of two or
more of these variants can be made to form more complex variants of the VRP.

The Capacitated Vehicle Routing Problem (CVRP) is the most common variant of the Vehicle Routing
Problem. In this variant, a fixed fleet of m delivery vehicles must service the customer demands, with the
additional restriction that these vehicles are capacitated: they can contain goods (the customer’s demands)
up to a certain maximum capacity. The CVRP has a homogeneous and heterogeneous variant.



In the Homogeneous CVRP (or Uniform Fleet CVRP) each vehicle has the same capacity Q. The only
difference in the formal definition is that a route is considered feasible if the total demand of all customers
on a route Ri does not exceed the vehicle capacity Q:

∑ki
j=1 d(v

i
j) ≤ Q. To ensure that vehicles are always

big enough, the demand of a customer is never greater than the vehicle capacity: dj ≤ Q (1 ≤ j ≤ n). Also,
the total demand of all customers can not be greater than the total capacity of all vehicles:

∑n
j=1 dj ≤ m∗Q.

In the Heterogeneous CVRP (or Mixed Fleet CVRP) the fleet is composed of different vehicle types,
each with its own capacity, and sometimes also with its own fixed cost. Even the cost matrix C can be
specific for each vehicle. A more detailed analysis of this variant is given in [22].

In the Vehicle Routing Problem with Time Windows each customer has to be served within a specific time
window. Adding these windows to the VRP creates a link with the well-known Job Scheduling Problem, see
[3]. In the VRP with Pickup and Delivery customers may also return items; this variant is outlined in [11].
The Stochastic VRP covers all the variants of the VRP with one or more randomized properties. For example,
the variant where the distance matrix is dynamic is described in [24]. Any variant that has a certain bound
D on the maximum distance covered by a vehicle is called a Distance Constrained VRP. Time may also be
dependent on other properties than distance, and when a maximum allowed time T per vehicle or for the
entire routing is specified, we consider the VRP to be Time Constrained.

This paper will focus on the Symmetric Homogeneous Capacitated Vehicle Routing Problem, in the
sequel addressed as “the CVRP”, or even shorter for reader convenience, “the VRP”. This VRP variant has
been proven to be NP-hard. For a detailed complexity analysis we refer the reader to [16]. We remark that
the hardness of an instance of the VRP is often related to the tightness T, which is the relation between the
sum of the demands and the total capacity of all the vehicles: T =

∑n
i=1 di / (Q ∗m).

3 Related Work
Many solving methods for the CVRP have been proposed. We distinguish between exact methods, methods
based on heuristics, and those based on meta-heuristics. In this section, we will describe each of these
approaches, paying special attention to one heuristic method, which will be the basis of our algorithm.

3.1 Exact Methods
The easiest exact method that one can think of is a simple brute-force approach. In essence we would be
listing our n customers in some order (which can be done in exactly n! ways), and we then place m − 1
delimiters that determine when a route has ended after m− 1 out of the n− 1 customers (placing it after the
last customer creates an empty vehicle), creating a total of n!

(
n−1
m−1

)
/m! possible solutions (we divide by m!

because the order of the vehicles is irrelevant). Because of this extremely large number of possibilities, we
can conclude that it is unlikely that we will ever find the optimal solution with a brute-force approach.

A branch-and-bound algorithm for the VRP clearly requires a lower bound, because we are trying to
minimize the total cost. Over the past 50 years, many lower bounds have been suggested for the Vehicle
Routing Problem. An excellent survey of lower bounds is given in [2]. Pure branch-and-bound is still rather
slow and will not give good solutions when the value of n increases. A description of a branch-and-cut
algorithm for the VRP is given in [15]. The algorithm converts the graph behind the VRP into a so-called
“K-tree”, a structure for which a polynomial algorithm exists to find shortest paths. Edges between certain
clustered customers are also fixed, and constraints that take care of the vehicle capacity and the fact that
each customer is visited at most once are also added. This algorithm has produced proven optimal solutions
for a number of difficult problems, and works well for problems with up to 100 customers.

Because exact methods are rather limited in performance, we refer the reader to the excellent surveys in
[18] and [22] for an overview of other exact algorithms for the VRP.

3.2 Heuristic Methods
Heuristic methods are a class of methods that do not provide an exact answer, but instead produce an as
optimal as possible solution in a reasonable amount of time. In this section we describe the Clarke & Wright’s
Savings heuristic algorithm in detail. Many other algorithms have been developed, see [22] for an overview.

The Clarke & Wright’s Savings (CWS) algorithm dates back to 1964 when it was introduced in [6] as
the first savings-based algorithm (sometimes also referred to as merging-algorithm). This method initially
assumes that each customer is served by its own vehicle. Next, two customers are to be served by the same



cij v0 v1 v2 v3 v4 v5

v0 0 28 31 20 25 34
v1 0 21 29 26 20
v2 0 38 20 32
v3 0 30 27
v4 0 25
v5 0

(a) Distance matrix

vi di

v1 37
v2 35
v3 30
v4 25
v5 32

(b) Demand vector

sij v1 v2 v3 v4 v5

v1 0 38 19 27 42
v2 0 13 36 33
v3 0 15 27
v4 0 34
v5 0

(c) Savings

1 − 5
1 − 2
2 − 4
4 − 5
2 − 5
1 − 4
3 − 5
1 − 3
3 − 4
2 − 3

(d) Savings List
Table 1: Example VRP instance with n = 5 for the CWS method

vehicle as long as their capacity constraints are not violated. Determining the order in which customers are
combined into a certain vehicle route is done by processing the so-called savings list, which is a list of all
customer pairs sorted in descending order by their savings value. The savings sij for a pair of customers vi
and vj is defined as the savings in terms of distance that would be realized if these two customers would be
served right after each other by the same vehicle instead of each by their own vehicle:

sij = c0i + c0j − cij (1)

Due to the triangle inequality sij ≥ 0 for all customers i, j. When the savings list has been processed,
two things can happen. Either all customers have been combined into m or less routes and the instance is
solved, or more than m routes are still present, as some customers are still assigned to their own vehicle.
This problem with so-called capacity-infeasible solutions being generated is often caused by a high tightness
value. The CWS method thus does not guarantee a capacity-feasible solution, however, when a solution is
found, it is likely to be good, as a more or less greedy algorithm to maximize savings has been performed.

Example. Consider the symmetric distance matrix in Table 1a for n = 5 customers and the demand
vector given in Table 1b. Assume that we have m = 2 vehicles, each with capacity Q = 100. We first
compute the savings of all the customer pairs vi and vj by applying the previously mentioned formula to the
distance matrix, resulting in Table 1c. For convenience we sort the customer pairs by savings, in descending
order, creating the savings list (Table 1d).
We will describe how the CWS algorithm would process the savings list. First, 1 − 5 is processed and
inserted in the first route. 1 − 2 is then skipped because adding 2 would exceed the capacity constraint of
our vehicle (37 + 35 + 32 > 100). Next 2 − 4 is inserted in a new route. Only customer 3 is left now and
is first encountered in the 3− 5 pair, so it is added to the first route. In this way the algorithm constructs the
routes 1− 5− 3 and 2− 4 with a total cost of 171, which in this case also happens to be optimal.

The CWS algorithm has a complexity of O(n2 · log n) with n ≥ 1 customers, assuming the savings list
is implemented as a heap with n2 elements, where extraction from the heap takes log n time. The method
has very often been adjusted, improved and tuned. As we will see later on, the CWS algorithm can serve as
a good basis for other (meta-heuristic) algorithms.

3.3 Meta-heuristics
Meta-heuristics can roughly be categorized into local search, population search and learning algorithms.
Each of these meta-heuristics have been applied more than once to the VRP. Tabu search is the most popular
local search method that has very often been successfully applied [7]. Genetic algorithms are also very
useful in solving the VRP; these population search techniques are discussed in great detail in [1]. For the
VRP, Ant Colony Optimization (ACO) [20] is the most frequently applied learning algorithm. Currently, the
best algorithms for larger VRP instances are based on Tabu Search and Genetic Algorithms.

4 Monte Carlo Techniques
Monte Carlo Techniques (MCT) are a class of algorithms that rely on the use of random sampling to finally
acquire a solution to a given problem. Plain random sampling is a method that starts at the root node of
a search tree and repeatedly picks a random child as a successor until it reaches a leaf node. The process
can be repeated a number of times to obtain a set of solutions, or to only keep the best solution after each
iteration. The advantage of plain random sampling compared to for example Depth-First-Search (DFS),
is that diversity is maximized. However, the disadvantage is that good solutions are not always randomly
distributed over the search tree, but even though scattered, are clustered in some part of the tree. It would



Figure 3: Basic Monte Carlo Simulation
Figure 4: Values of p (×100%, horizontal axis) and their
corresponding average solution lengths (vertical axis)

be better if we could guide the search towards these better clusters. The key lies in the balance between
exploration and exploitation: the algorithm needs a sufficient amount of randomness to explore the search
space, but it also has to exploit already found potentially better regions of the search space.

Monte Carlo Simulation (MCS), for example as described in [19], is especially useful when it is hard
to judge the quality of a partial solution before the entire solution has been generated, which would be a
requirement for heuristic algorithms such as (ID)A*. The process is explained in Figure 3, and works as
follows. We start at the root node of the search space which is marked as the current node. From each of
the b ≥ 1 possible successors (children) of this current node we perform r ≥ 1 (common values are around
1000 or more) random simulations until a terminal node of the search space is reached. So at each step
of this algorithm a total of b ∗ r so-called probes are sent down towards the leaf nodes, following some
simulation strategy. The “best” child based on these random simulations is then selected for expansion. The
“best” child can be the node with the highest score out of the r random probes, or it can be the node with the
highest average out of the r probes. Which evaluation method is best depends on the type of problem and
the behaviour of the search space. When the current node is a leaf, an actual solution has been found and
the method is terminated. The emerging behaviour here is what we are looking for: the search is repeatedly
“guided” towards better parts of the search tree where again better solutions can be found. Another advantage
of MCS but also Monte Carlo Techniques in general is that these methods are highly parallelizable.

The MCS method can be improved by performing a full search as soon as the size of the remaining search
space below the current node allows this. Another simple improvement can be realized by, at a global level,
keeping track of the best solution found so far during all the random probes, as this solution may not always
be identical to the solution that is finally found by the MCS algorithm itself. Also, it is often worthwhile to
optimize the simulation strategy. Instead of sending random probes down the search tree, domain-specific
knowledge can be used to slightly guide the search. For example, in case of the Vehicle Routing Problem, it
might not be smart to create a path between two customers with a very large distance in between them, while
both customers have many other closer customers that they can be connected to. The problem with having a
big random factor playing a role in an algorithm such as MCS is that even though we take an average out of
a fixed (perhaps too small) number of random simulations, wrong choices can still be made. Therefore, one
run of a Monte Carlo algorithm is not as efficient as ten runs. Often described in literature as Meta Search,
the so-called restarts can help to improve the quality of the final solution.

5 Monte Carlo Techniques applied to the VRP
Compared to the huge amount of work done on the VRP, relatively little work seems to have been done
on applying Monte Carlo Techniques to the Capacitated VRP. Using Monte Carlo Techniques to solve the
VRP was suggested for the first time in 1979 in [5]. Improvements compared to the CWS method were
already observed at that time, though standard test sets were not yet defined, making comparison with current
techniques quite hard. Random sampling for the Distance Constrained VRP was suggested in 2000 by [10],
where a simulation method very similar to the Nearest Neighbor Insertion [4] method was used. Compared
with best known methods, performance was quite limited. Other than the algorithm outlined in the next
subsection, no other literature than the above, was found on the application of MCT to the CVRP.



5.1 ALGACEA
In 2007, the ALGACEA-1 method was suggested in [14] as a Monte Carlo algorithm for the VRP, based
on the Clarke & Wrights Savings approach. Later on, ALGACEA-2, an improved version assisted by an
entropy function and some other improvements was introduced in [13]. In essence, this algorithm performs
plain random sampling where in each random sample a savings pair sij is repeatedly selected from the set
of savings pairs with probability pij :

pij =
sij

α∑
k,` sk`

α (2)

Here k and l are the indexes of the unvisited customers and α defines the focus on the best savings pairs,
and can according to the authors be set to an integer value somewhere between 1 and 5. This algorithm
thus selects savings pairs with a higher savings value with a higher probability than pairs that produce lower
savings, in an attempt to keep the balance between exploration and exploitation intact.

SR-1 [12] and SR-2 are are Monte-Carlo algorithms very similar to ALGACEA, but unfortunately only
tests on randomly distributed search spaces were reported, and not the well-known test sets.

5.2 BinaryMCS-CWS
In this section we introduce our method, BinaryMCS-CWS, which is based on Monte Carlo Simulation
(see Section 4) and the Clarke & Wright’s (CWS) algorithm (see Section 3.2). The method is outlined in
Algorithm 1, and it essentially iterates over the savings list, sorted in descending order by the size of the
savings. If a savings pair is feasible, r random simulations are performed for the current state and the state
where that savings pair is processed. If the average solution quality is better when the pair is processed, it
is actually processed and the procedure is repeated, otherwise the savings pair is skipped. The algorithm
ends when a solution is found or when the savings list has been exhausted. The main difference with the
ALGACEA algorithm lies in the fact that our algorithm never deviates from the order of the savings list.

In each random simulation (Algorithm 2), the savings list is processed linearly from top to bottom.
However, a savings pair is either skipped with a certain probability p (0 ≤ p ≤ 1) or processed with
probability 1− p. Notice that setting this parameter p to 0 is the exact CWS algorithm: no savings pairs are
skipped and every simulation will have the same outcome. Very high values for p will in turn result in a lot
of chaos and infeasible (or at least inefficient) routes. In essence, this probability parameter p allows us to
tune the balance between exploration and exploitation: it defines how much diversity is added to the CWS
solution. We have experimented with different values of p on several instances from [23]. The best solutions
were not generated with one specific value, but for a range of values. Therefore, in each simulation of our
algorithm, p is set to a random value between a lower bound ` and an upper bound u. This ensures that some
simulations have more “exploration power” than others. For our VRP test set, a value between 0.05 and 0.20
appears to give the best results (see Figure 4 for instance E051-05E), so we set ` = 0.05 and u = 0.20.

Algorithm 1 BINARYMCS-CWS

Require: savingslist , r
while !savingslist .empty() or solution .done() do

pair ← savingslist .pop();
if feasible(pair ) then

processed ← solution .process(pair );
yes ← 0; no ← 0;
for i = 1 to r do

yes ← yes + SIMULATION(processed , savingslist);
no ← no + SIMULATION(solution , savingslist);

end for
if yes ≥ no then

solution ← processed ;
end if

end if
end while
if best .length() < solution .length() then

return best ;
end if
return solution;

Algorithm 2 SIMULATION

Require: solution , savingslist
p = rand(`, u);
while !savingslist .empty() do

pair ← savingslist .pop();
if rand(0, 1) > p then

solution ← solution .process(pair );
end if

end while
if solution .length() < best .length() then

best ← solution;
end if
return solution .length();

Note that in both algorithms, `, u and best are
global variables. All other variables are local.



Instance Tightness Best CWS ALGACEA-2 Diff BinaryMCS-CWS Diff
A-n65-k9 0.97 1174 1479 1343 14.40% 1224 4.26%
A-n80-k10 0.96 1764 1945 1927 9.24% 1805 2.32%
E051-05E 0.89 525 637 579 10.29% 536 2.10%
E072-04F 0.97 242 345 310 28.10% 265 9.50%
E076-07S 0.97 691 845 781 13.02% 703 1.74%
E076-10E 0.97 837 999 948 13.26% 860 2.75%
E076-14U 0.91 1029 (1160) 1122 9.04% 1057 2.72%
E101-08E 0.91 826 1031 970 17.43% 861 4.24%
E101-10C 0.93 820 940 877 6.95% 844 2.93%
E101-14U 0.93 1091 1306 1258 15.31% 1101 0.92%
E151-12C 0.93 1031 1331 1252 21.44% 1084 5.14%
E200-17B 0.94 1291 1291 1557 20.60% 1346 4.26%
E200-17C 0.94 1311 1557 1502 14.57% 1360 3.74%

Total 12632 14866 14426 14.20% 13046 3.28%

Table 2: ALGACEA-2 vs. BinaryMCS-CWS, and their difference (“Diff” ) with the best known solution.

6 Results
In this section we will compare BinaryMCS-CWS with ALGACEA-2 using a big part of the test sets found
at [23]. We used a 3.2GHz machine with 6GB memory and no more than 5 minutes of computation time per
instance, which is also the maximum the amount of time spent by ALGACEA-2.

The results are shown in Table 2. The first column lists the instance names, where the first and second
number in a name denote the number of customers and the number of vehicles, respectively. The second
column denotes the tightness of that instance, followed by the instance’s best known solution, found either
by an exact algorithm or some algorithm based on metaheuristics. The fourth column shows the obtained
solution length by the standard CWS algorithm. Values between brackets denote infeasible solutions, mean-
ing too many vehicles were used. The next four columns represent the obtained solution lengths and their
difference with the best known solution, for the ALGACEA-2 and the BinaryMCS-CWS method.

The BinaryMCS-CWS algorithm as described in Section 5.2 was executed with r = 2000 and making
use of random restarts. It produces solutions with a difference of 13046 − 12632 = 414 distance units
(3.28% on average), whereas ALGACEA-2 has a difference of 1794 (14.20%) from the optimal or best
known solution. Interesting to note is that the instances that are hard for the ALGACEA-2 algorithm (such
as E072-04F) are also relatively hard for our BinaryMCS-CWS method. This is most likely due to to the
limitation of the applicability of the CWS method to that particular instance. Apparently, for some instances,
the CWS method is simply not the way to go, and no matter how much we deviate from the CWS solution
path, or no matter how many and which savings pairs we skip, we never find that one optimal solution.

We think our method performs better because of two reasons. First of all, our method performs Monte
Carlo Simulation instead of random sampling. Second, our method respects the order of the savings list,
whereas the ALGACEA-2 method can and often will change the order in which the savings are processed.
We expect this ordering to be crucial for obtaining good results. We also point out the simplicity of our
method compared to the ALGACEA-2 algorithm. Our experiments suggest that adding more time does
not significantly improve our solution quality, which is likely due to the limited applicability of the CWS
method. Nevertheless, we think that we have presented an interesting, simple, and well-performing solving
method for the VRP. Our obtained solutions are available at [21]. An example solution is given in Figure 2.

7 Conclusion
We have applied Monte Carlo Simulation to the CWS algorithm and developed a solving method for the
Vehicle Routing Problem called BinaryMCS-CWS. This method produces solutions with only an 3.28%
average deviation from the optimal solutions for a well-known test set, outperforming the previous best
known Monte Carlo algorithm for the VRP, and performing comparable to exact and meta-heuristic methods.
Even though our method is limited by the applicability of the CWS algorithm on which it is based, using a
very simple approach, it produces high-quality results in a reasonable amount of time.

Our algorithm, BinaryMCS-CWS, can most likely still be improved by fine-tuning the value of p, for
example by finding a correlation with some domain-specific property of the VRP. Furthermore, it is worth
investigating how our method performs within other Monte-Carlo frameworks, such as MCTS [8]. It may
also be worth investigating how our method performs on other variants of the VRP, or how Monte Carlo
Techniques could perhaps also be applied to other heuristic VRP solving methods.



Acknowledgments
We would like to thank Hendrik Jan Hoogeboom and the anonymous reviewers for their worthy suggestions.

References
[1] B.M. Baker and M.A. Ayechew. A genetic algorithm for the Vehicle Routing Problem. Computational

Operational Research, 30(5):787–800, 2003.
[2] R. Baldacci and A. Mingozzi. Lower bounds and an exact method for the Capacitated Vehicle Routing

Problem. Service Systems and Service Management, 2:1536–1540, 2006.
[3] J.C. Beck, P. Prosser, and E. Selensky. Vehicle routing and job shop scheduling: What’s the differ-

ence? In Proceedings of the 13th International Conference on Artificial Intelligence Planning and
Scheduling, pages 267–276, 2004.

[4] L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of vehicles and crews. The State
of the Art: Computers and Operations Research, 10:63–212, 1986.

[5] G.M. Buxey. The Vehicle Scheduling Problem and Monte Carlo Simulation. Journal of Operational
Research Society, 30:563–573, 1979.

[6] G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number of delivery points.
Operations Research, 12:568–581, 1964.

[7] J. Cordeau and G. Laporte. Tabu search heuristics for the Vehicle Routing Problem. In Operations
Research/Computer Science Interfaces, pages 145–163, 2005.

[8] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Proceedings of
the 5th international conference on computers and games, pages 72–83, 2006.

[9] G.B. Dantzig and J.H. Ramser. The Truck Dispatching Problem. Management Science, 6(1):80–91,
1959.

[10] P.F. de Córdoba, L.M. Garcı́a-Raffi, A. Mayado, and J.M. Sanchis. A real delivery problem dealt with
Monte Carlo Techniques. Sociedad de Estadistica e Investigacion Operativa Top, 8(1):57–71, 2000.

[11] J. Dethloff. Vehicle routing and reverse logistics: The Vehicle Routing Problem with simultaneous
delivery and pick-up. OR Spectrum, 23(1):79–96, 2001.

[12] J. Faulin, M. Gilibert, A. Juan, X. Vilajosana, and R. Ruiz. SR-1: A simulation-based algorithm for the
Capacitated Vehicle Routing Problem. In Proceedings of the 40th Conference on Winter Simulation,
pages 2708–2716, 2008.

[13] J. Faulin and A. Juan. ALGACEA-2: An entropy-based heuristics for the Capacitated Vehicle Routing
Problem. In Seventh Metaheuristics International Conference, 2007.

[14] J. Faulin and A. Juan. The ALGACEA-1 method for the Capacitated Vehicle Routing Problem. Inter-
national Transactions in Operational Research, 15(5):599–621, 2008.

[15] M.L. Fisher. Optimal solution of Vehicle Routing Problems using minimum k-trees. Operations
Research, 42(4):626–642, 1988.

[16] R. Hassi and S. Rubinstein. On the complexity of the k-customer Vehicle Routing Problem. Operations
Research Letters, 33(1):71–76, 2005.

[17] G. Laporte. Fifty years of Vehicle Routing. Transportation Science, 43(4):408–416, 2009.
[18] G. Laporte and Y. Nobert. Exact algorithms for the Vehicle Routing Problem. Annals of Discrete

Mathematics, 31:147–184, 1987.
[19] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. Third edition, McGraw-Hill, 2000.
[20] S. Mazzeo and I. Loiseau. An ant colony algorithm for the Capacitated Vehicle Routing Problem.

Electronic Notes in Discrete Mathematics, 18:181–186, 2004.
[21] F.W. Takes. Applying Monte Carlo Techniques to the Capacitated Vehicle Routing Problem, Master

Thesis, Leiden University, 2010. http://www.liacs.nl/˜ftakes/vrp/ .
[22] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM, 2002.
[23] D. Vigo. VRPLIB: A Vehicle Routing Problem LIBrary. http://www.or.deis.unibo.it/

research_pages/ORinstances/VRPLIB/VRPLIB.html, accessed May 31, 2010.
[24] J. van Woensel, L. Kerbache, H. Peremans, and N. Vandaele. Vehicle routing with dynamic travel

times: A queueing approach. European Journal of Operational Research, 186:990–1007, 2008.


